

AS & IP: You Have a Friend in Me

About Us!

Tia Johnson, MSHS, MLS(AMT), CIC

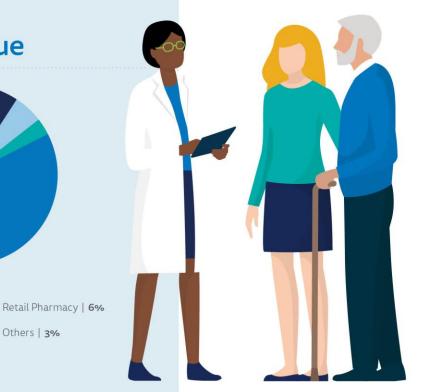
Director of Infection Prevention

Over 10 years of healthcare experience in laboratory services, microbiology, data analysis, and infection prevention with interests in program management, multidisciplinary collaboration, and leading process improvement initiatives.

Michael Kent, PharmD, BCIDP

Clinical Pharmacy Specialist of Antimicrobial Stewardship

In addition to antimicrobial stewardship, interests include pharmacokinetics/pharmacodynamics, antibiotic allergy, management of bone and joint infections, and education.


*FY 2022

Patient Revenue | 37%

Property Taxes | 37%

Federal & State Programs | 17%

A hospital licensed for 582 beds and 25+ clinics across Tarrant County

A Level I Trauma Center and psychiatry emergency center

19 residencies and fellowships with the largest hospital-based family medicine residency program in the nation

A Level III Neonatal and Level IV Maternal Facility for exceptional women and infants services

Patient Encounters

Community Health Visits 578,710 Hospital Patient Days 176,243

Total Emergency Visits 125,812

Urgent Care Visits 39,973

Geriatric Patients 26,188

Psych Emergency Visits 18,617

Total Surgeries 14,417

Others | 3%

4,093 Babies Born

Languages Translated 206

Designated by ANCC as a Pathway to Excellence® organization

Certified in stroke, heart attack, sepsis, and delirium care

115 volunteers served 9,000+ patients (4,600+hours total)

Learning Objectives

- Describe TJC requirements for antimicrobial stewardship and infection prevention collaboration
- Discuss how collaboration through data sharing and chart reviews can help reduce inappropriate antimicrobial administration
- 3. Describe how the antibiogram is used to monitor resistance patterns
- Describe how NHSN data is used to monitor antimicrobial administration

Centers for Disease Control and Prevention

"Antibiotic stewardship is the effort to measure and improve how antibiotics are prescribed by clinicians and used by patients. Improving antibiotic prescribing and use is critical to effectively treat infections, protect patients from harms caused by unnecessary antibiotic use, and combat antibiotic resistance."

Association for Professionals in Infection Control and Epidemiology

"Antimicrobial stewardship is a coordinated program that promotes the appropriate use of antimicrobials (including antibiotics), improves patient outcomes, reduces microbial resistance, and decreases the spread of infections caused by multidrug-resistant organisms."

Core Elements of Hospital Antibiotic Stewardship Programs

Core Elements of Hospital Antibiotic Stewardship Programs

Hospital Leadership Commitment

Dedicate necessary human, financial, and information technology resources.

Accountability

Appoint a leader or co-leaders, such as a physician and pharmacist, responsible for program management and outcomes.

Pharmacy Expertise (previously "Drug Expertise"):

Appoint a pharmacist, ideally as the co-leader of the stewardship program, to help lead implementation efforts to improve antibiotic use.

Action

Implement interventions, such as prospective audit and feedback or preauthorization, to improve antibiotic use.

Tracking

Monitor antibiotic prescribing, impact of interventions, and other important outcomes, like *C. difficile* infections and resistance patterns.

Reporting

Regularly report information on antibiotic use and resistance to prescribers, pharmacists, nurses, and hospital leadership.

Education

Educate prescribers, pharmacists, nurses, and patients about adverse reactions from antibiotics, antibiotic resistance, and optimal prescribing.

TJC Requirements

Centered in Care Powered by Pride

- Effective January 1, 2023, new and revised antibiotic stewardship requirements will apply to all Joint Commission—accredited hospitals and critical access hospitals.
- The 12 elements of performance (EPs) are included in the "Medication Management" (MM) chapter (Standard MM.09.01.01) and expand upon the current expectations for antibiotic stewardship programs in the hospital setting.

EP 12 (revised): The leader(s) of the antibiotic stewardship program is responsible for the following: Communicating and collaborating with the medical staff, nursing leadership, and pharmacy leadership, as well as with the hospital's infection prevention and control and quality assessment and performance improvement programs on antibiotic use issues

EP 14 (revised): The antibiotic stewardship program demonstrates coordination among all components of the hospital responsible for antibiotic use and resistance, including, but not limited to, the infection prevention and control program, the quality assessment and performance improvement program, the medical staff, nursing services, and pharmacy services

EP 16 (new): The antibiotic stewardship program monitors the hospital's antibiotic use by analyzing data on days of therapy per 1000 days present or 1000 patient days, or by reporting antibiotic use data to the National Healthcare Safety Network's Antimicrobial Use Option of the Antimicrobial Use and Resistance Module

Data Sharing & Chart Review

Centered in Care Powered by Pride

AS & IP Collaboration Goals

According to the CDC, antibiotic resistance is one of the most urgent threats to public health...

Our goal is to work together to reduce inappropriate antimicrobial administration, prevent the rise of the resistance, and improve patient safety!

What does collaboration look like?

Infection Preventionist

Standing Report to ASC

Quarterly NHSN Reports

Monthly C.diff Trends

Preop Antibiotic Reports

MDRO Review

Review Sample of UAs

Contact Tracing for Exposures

Hand Hygiene & Isolation

ID Pharmacist

Share MRNs

Staff Education

Clinical Decision Tools

Policy & Procedure

Guideline Review

Regulatory

Standing Report to IPCC

Antibiogram Updates w/Micro

Monthly Facility-specific Trends

Treatment Guideline Updates

Review All UAs

Chart Review – C.diff Infection (CDI)

- Why? To trend infections potentially related to antibiotic exposure (a risk factor of CDI)
- Risk Factors
 - » Older age (65 and older)
 - » Recent stay at a hospital or nursing home
 - » A weakened immune system
 - » Previous C.diff infection
 - » Antibiotic exposure

Adult Antibacterial agents posing the highest risk for CDI

This category contains antimicrobials that are part of other SAAR categories.

- CEFDINIR
- CEFEPIME
- CEFIXIME
- CEFOTAXIME
- CEFPODOXIME
- CEFTAZIDIME
- CEFTRIAXONE
- CIPROFLOXACIN
- CLINDAMYCIN
- GEMIFLOXACIN
- LEVOFLOXACIN
- MOXIFLOXACII

Chart Review - Urine Cultures

 Why? To identify unnecessary treatment of asymptomatic bacteriuria and to reduce over-reporting of CAUTI due to

pan-culturing

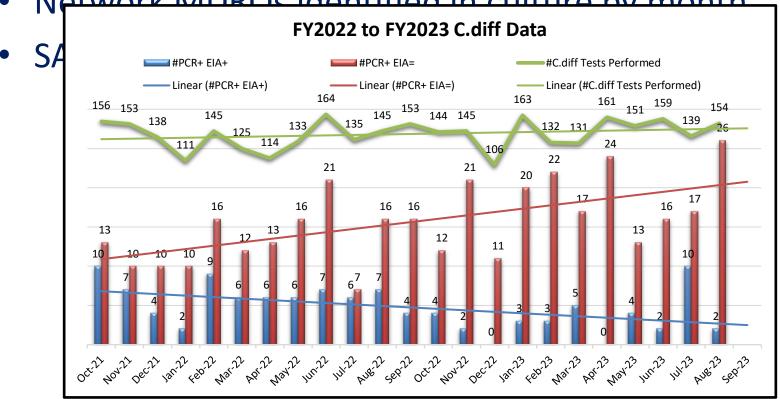
Pharmacists can help avoid unnecessary treatment of asymptomatic bacteriuria by:

- **1.** Prompting the provider to consider if the patient has signs and symptoms consistent with UTI prior to making a recommendation for treatment. Signs and symptoms may include:^{1,2}
 - ✓ urinary urgency
 - √ urinary frequency
 - √ dysuria
 - √ suprapubic pain
 - √ flank pain
 - √ pelvic discomfort
 - √ acute hematuria
 - √ fever

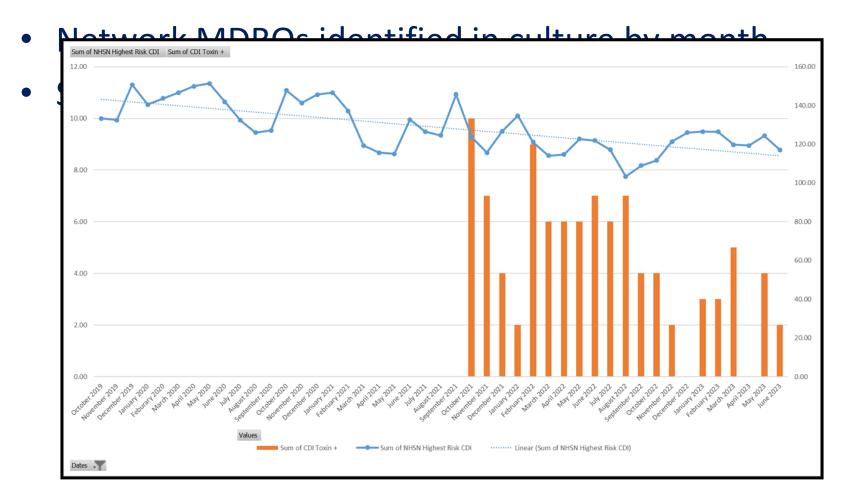
Note: Delirium or nausea/vomiting should be interpreted with caution as, by themselves, they have a low specificity for UTI.¹

2. Discussing the potential for avoiding antibiotic use with the provider if the patient has asymptomatic bacteriuria.

The scenarios and recommendations discussed are applicable to most immunocompetent adult patients. Prior to making interventions, always assess the individual patient and use your clinical judgment. Follow your institution's treatment guidelines when applicable.



- C.diff trends
- Network MDROs identified in culture by month
- SAAR trends


C.diff trends

Network MDROs identified in culture by month

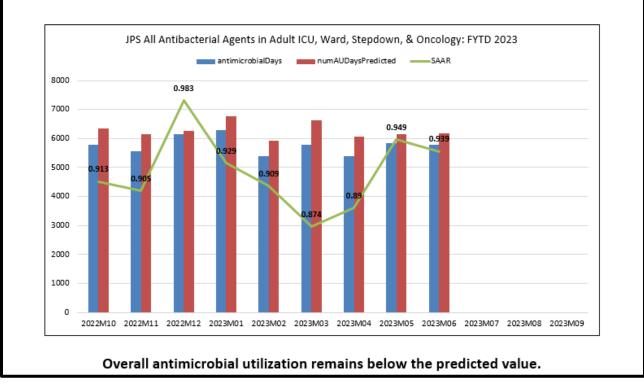
C.diff trends

- C.diff trends
- Network MDROs identified in culture by month
- SAAR trends

Multidrug-Resistant Organisms (MDRO) - FY2023														
	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23	Sep-23	FY2023	FY2022
CRE	1	0	1	1	3	0	2	5	2				15	34
C. difficile	4	2	0	3	3	5	3	4	2				26	94 \
ESBL	67	50	54	63	52	62	68	85	78				579	755
MDR-Pseudomonas	3	0	1	3	0	3	1	2	1				14	16
MDR-Acinetobacter	0	1	3	1	3	2	2	3	0				15	12
MRSA	58	65	64	79	60	64	57	64	80				591	747
VISA/VRSA	0	0	1	0	0	0	0	0	0				1	0 4
VRE	4	5	1	10	7	8	7	5	2				49	61
Total	137	123	125	159	125	144	138	163	163	0	0	0	1290	1719

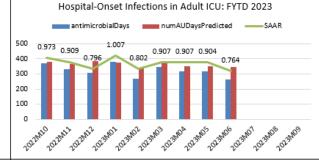
^{*}All data is for inpatient and outpatient

^{**}All data includes incident (new) and recurrent infections or colonizations


^{***}C.diff data is PCR+ EIA+

- C.diff trends
- Network MD
- SAAR trends

Standard Antimicrobial Administration Ratio (SAAR) FY2023



- C.diff trends
- Network MDI
- SAAR trends

SAAR: Broad Spectrum Antibacterial Agents for Hospital-Onset Infections FY2023

- AMIKACIN (IV only)
- AZTREONAM (IV only)
- CEFEPIME
- CEFTAZIDIME
- DORIPENEM
- GENTAMICIN (IV only)
- IMIPENEM/CILASTATIN
- MEROPENEM
- PIPERACILLIN/TAZOBACTAM
- TOBRAMYCIN (IV only)

JPS Broad Spectrum Antibacterial Agents Used for

JPS Broad Spectrum Antibacterial Agents Used for Hospital-Onset Infections in Adult Wards: FYTD 2023

antimicrobialDays numAUDaysPredicted SAAR 0.91 0.869 0.922 0.913

0.784 0.922 0.913

0.781 0.675 0.777

300 0.781 0.675 0.777

300 0.781 0.675 0.777

300 0.781 0.675 0.777

300 0.781 0.675 0.777

300 0.781 0.675 0.777

300 0.781 0.675 0.777

300 0.781 0.675 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

300 0.777

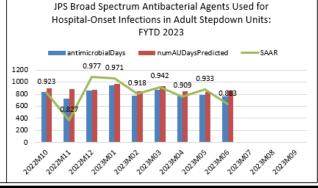
300 0.777

300 0.777

300 0.777

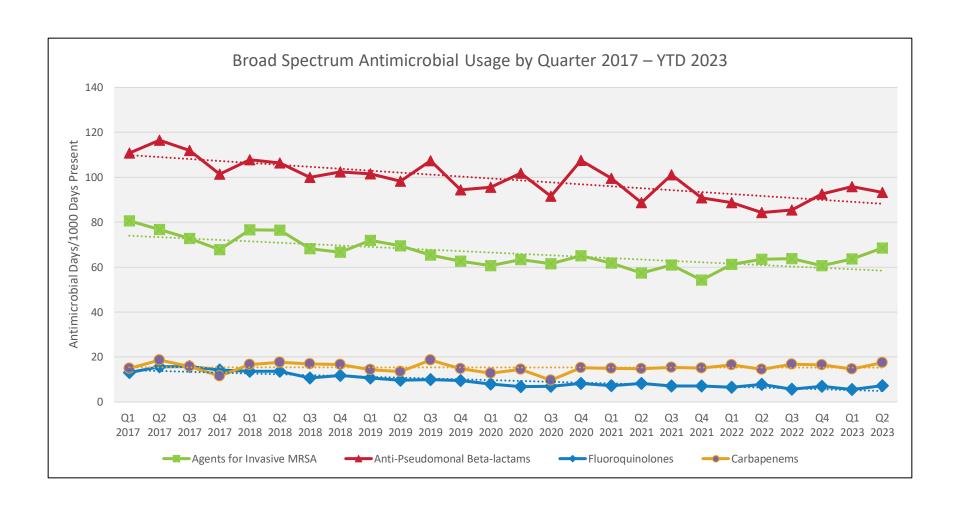
300 0.777

300 0.777


300 0.777

300 0.777

300 0.777


300 0.777

300 0.7

Data Reports to IPCC

Challenges & Barriers

- Time and staff availability to drill down data
- EMR limitations to create specific reports
- NHSN reporting when reverse algorithm is used

Centered in Care Powered by Pride

- Clinical and Laboratory Standards Institute (CLSI) recommends developing antibiogram at least annually
- Primary aim: to guide clinicians in the selection of empirical antimicrobial therapy for initial infections when definitive susceptibility results are not available
- Including only the first isolate of a given species from an individual patient during the analysis period

Gram-negative organisms 01/2021-10/2021	# isolates tested	Ampicillin	Ampicillin-sulbactam	Amoxicllin-clavulanate	Cefazolin	Ceftriaxone	Cefepime	Piperacillin-tazobactam	Ertapenem	Imipenem-cilastatin	Ciprofloxacin	Levofloxacin	Gentamicin	Tobramycin	Nitrofurantoin	Trimethoprim- sulfamethoxazole
Organism			% Susceptible													
Escherichia coli	770	42	54	78	76	79	81	94	100	100	73	73	88	85	-	65
Urinary isolates	480	43	55	79	79	82	83	95	100	100	73	73	89	87	93	67
Enterobacter cloacae complex	109	-	-	-	-	-	96	-	99	99	98	97	98	95	-	65
Klebsiella aerogenes	45	-	-	-	-	-	100	-	100	100	100	100	100	100	-	100
Klebsiella pneumoniae	260	1	68	86	78	81	81	87	99	100	89	92	92	88	-	81
Urinary isolates	128	1	64	84	77	79	80	84	99	99	89	91	91	88	25	78
Proteus mirabilis	179	79	87	91	93	96	96	99	98	96‡	80	83	96	96	-	80
Urinary isolates	68	81	87	85	91	94	94	97	99	94‡	82	84	96	96	-	84
Pseudomonas aeruginosa	258	-	-	-	-	-	93	95	-	92	93	85	97	99	-	-
Urinary isolates	35	-	-	-	-	-	97	100	-	97	94	86	94	100	-	-
Serratia marcessans	44	-	-	-	-	95	95	-	95	-	100	100	100	93	-	98
Stenotrophomonas maltophilia	27*	-	-	-	-	-	-	-	-	-	-	93	-	-	-	93

- Institutions may decide to develop more targeted antibiograms based on body site, hospital unit, and/or specific patient populations
 - » Outpatient, ED, ICU specific
 - » Urine or blood culture specific

 Other components added to the antibiogram have been described, such as drug cost, dosing guides and drug-use policies

Challenges & Barriers

- Resources required to generate and antibiogram will vary by facility
- %S may not fully represent the clinical utility of an antimicrobial
 - » Likely does not capture susceptible dose dependent category in which PK/PD optimization might increase clinical utility
- Another limitation is the antibiogram likely includes a collection of both pathogens and colonizers

NHSN AU Module & SAAR

Centered in Care Powered by Pride

NHSN AUR Module

NHSN Patient Safety Component - Chapter 15:
 Antimicrobial Use and Resistance (AUR) Module

 Antimicrobial use (AU) module facilitates riskadjusted inter- and intra-facility antimicrobial use benchmarking and allows for trends over time at the facility and national levels

NHSN AUR Module

Numerator Data

- Antimicrobial days or days of therapy
- The aggregate sum of days for which any amount of a specific antimicrobial agent was administered to individual patients

Denominator Data

NHSN AU Numerator Data

Table 1. Classification and Definition of Routes of Administration for Antimicrobial Days

Classification: Route of Administration ^a	Definition ^b
Intravenous (IV)	An intravascular route that begins with a vein.
Intramuscular (IM)	A route that begins within a muscle.
Digestive Tract	A route that begins anywhere in the digestive tract extending from the mouth through rectum. ^c
Respiratory Tract	A route that begins within the respiratory tract, including the oropharynx and nasopharynx.

^a Other routes of administration are <u>excluded</u> from the AU Option reporting (for example, antibiotic locks, intraperitoneal, intrapleural, intraventricular, irrigation, topical) and should not be included in the total antimicrobial days nor the sub-stratification of the routes of administration.

^b Definitions were drawn from SNOMED qualifier value hierarchy. Refer to the <u>CDA Antimicrobial Use</u> (<u>AU) Toolkit</u> for specific codes corresponding to each route of administration.

^c For example, rectal administration of Vancomycin.

NHSN AU Numerator Data

Classification:	
Route of Administration ^a	Definition ^b
Intravenous (IV)	An intravascular route that begins with a vein.
Intramuscular (IM)	A route that begins within a muscle.
Digestive Tract	A route that begins anywhere in the digestive tract extending from

Respiratory Tract

Table 2. Example Stratification of Antimicrobial Days by Route of Administration

Table 2. Example 3d admenter of finding robbit Days by Noute of Fidining daton										
Month/		Drug-specific Antimicrobial Days								
Year-	Antimicrobial									
Location	Agent	Total ^a	IV	IM	Digestive ^b	Respiratory				
Month/		Tobramycin	Tobramycin	Tobramycin	Tobramycin	Tobramycin				
Year	Tobramycin	Days	Days	Days	Days	Days				
Location		(Total)	(IV)	(IM)	(Digestive)	(Respiratory)				
01/2022		1	1	0	0	1				
Med Ward		1	1	0	0	1				

^a Drug-specific antimicrobial days (total) attributes one antimicrobial day for any route of administration. For example, if Tobramycin was administered to a patient intravenously and via a respiratory route on the same day, the antimicrobial days would be counted as "one Tobramycin Day (Total)" and the stratification by route of administration would be "one Tobramycin Day (IV)" and "one Tobramycin Day (Respiratory)".

Other routes of administ locks, intraperitoneal, intra total antimicrobial days no ^b Definitions were drawn f (AU) Toolkit for specific co ^c For example, rectal admi

^b Tobramycin is used for an example of route stratification only and is not FDA approved for administration via the digestive route.

NHSN AU Numerator Data

Data Element	Details
Antimicrobial Agents	Defined as select antimicrobial agents and stratified by route of administration (specifically, intravenous, intramuscular, digestive, and respiratory). Refer to Appendix B for a complete list of antimicrobials. The list of select antimicrobials will evolve with time as new agents become commercially available and old agents are removed from the market. Topical antimicrobial agents are not included in the NHSN AU Option.
Data source	Antimicrobial days are derived from antimicrobial administration data documented in the eMAR and/or BCMA only. Usage derived from other data sources (for example, pharmacy orders, doses dispensed, doses billed) cannot be submitted.
Location	Antimicrobial days are aggregated for each inpatient location, facility-wide inpatient, and three select outpatient acute-care settings (specifically, outpatient ED, pediatric ED, and 24-hour observation area) per the

NHSN AUR Module

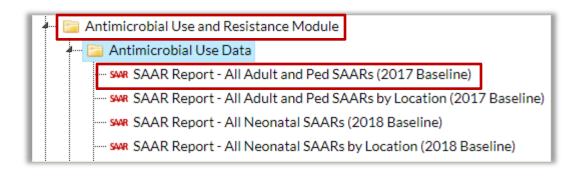
Numerator Data

- Antimicrobial days or days of therapy
- The aggregate sum of days for which any amount of a specific antimicrobial agent was administered to individual patients

Denominator Data

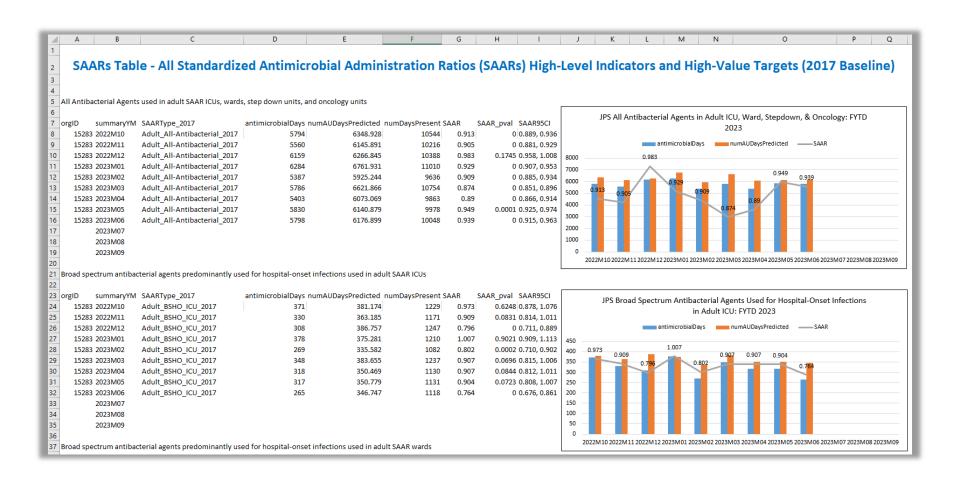
- Days present and number of admissions
 - » Location-specific
 - » FacWideIn

Standardized Antimicrobial Administration Ratio (SAAR)


$$SAAR = \frac{Observed\ Antimicrobial\ Use}{Predicted\ Antimicrobial\ Use}$$

Observed antimicrobial use is the number of antimicrobial days reported by a facility for a specified category of antimicrobial agents in a specified group of patient care locations.

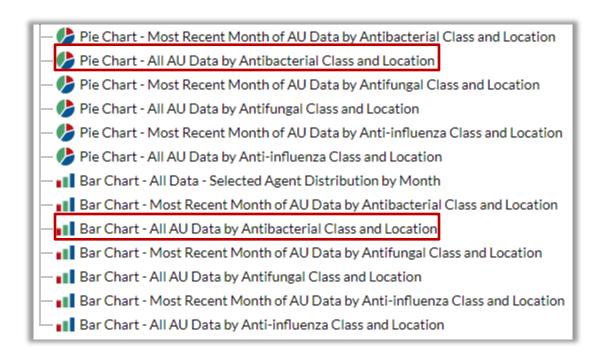
Predicted antimicrobial use is calculated using predictive models developed by CDC and applied to nationally aggregated 2017 adult and pediatric or 2018 neonatal AU data reported to NHSN from the same group of patient care location types.


Using NHSN for SAAR Data

SAAR Data

Antibiotic-Specific Data

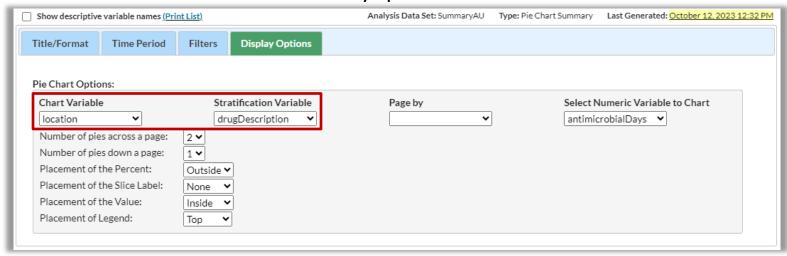
Pie Charts

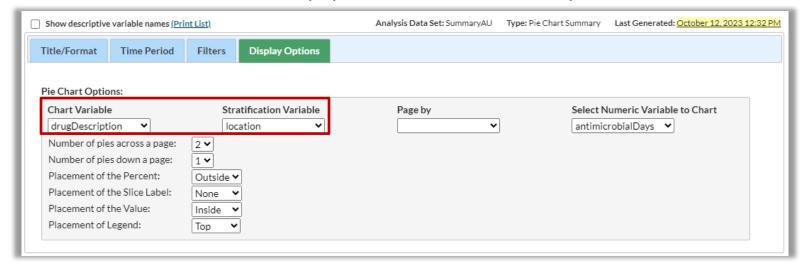

- » Antimicrobial Days per Antibacterial Class
- » Antimicrobial Days per Antibacterial Class by Location

Bar Charts

- » Antimicrobial Days per Antibacterial Class
- » Antimicrobial Days per Antibacterial Class by Location

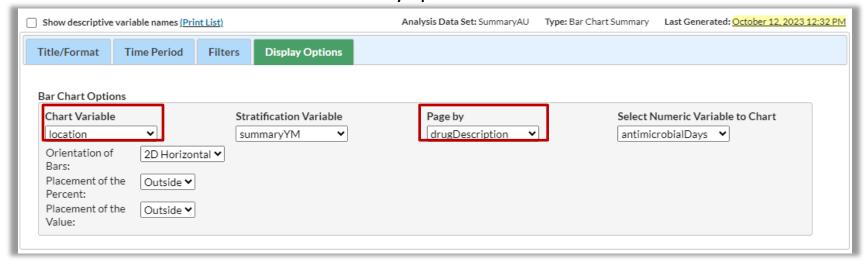
Using NHSN for Antibiotic-Specific Data

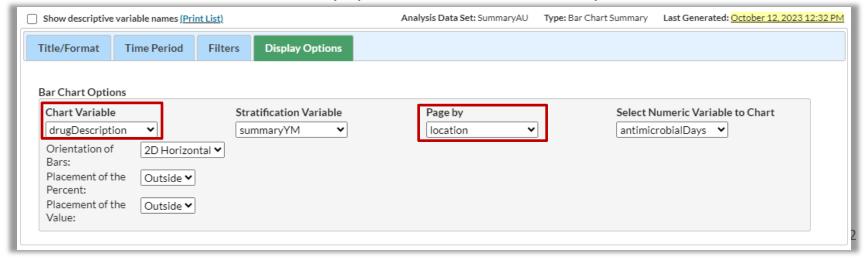




Using NHSN for Antibiotic-Specific Data – Pie Charts

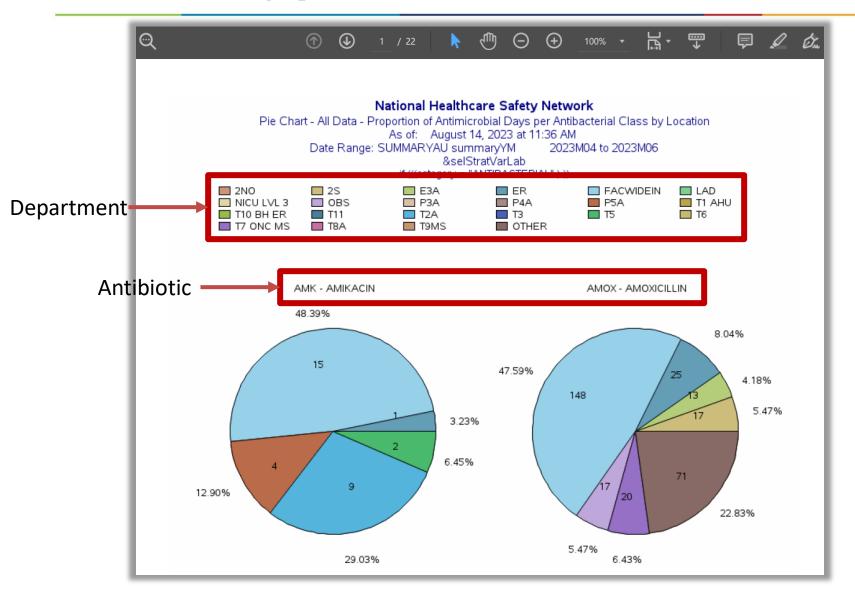
Antimicrobial Days per Antibacterial Class





Using NHSN for Antibiotic-Specific Data – Bar Charts

Antimicrobial Days per Antibacterial Class

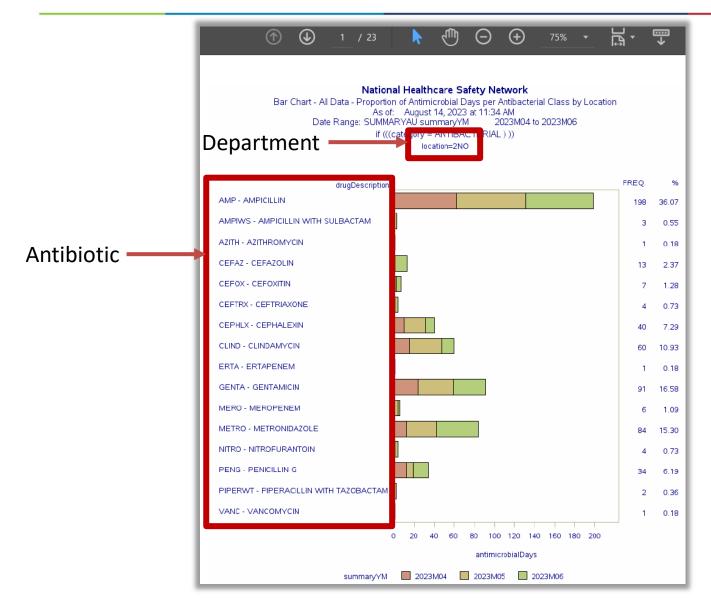


Pie Chart

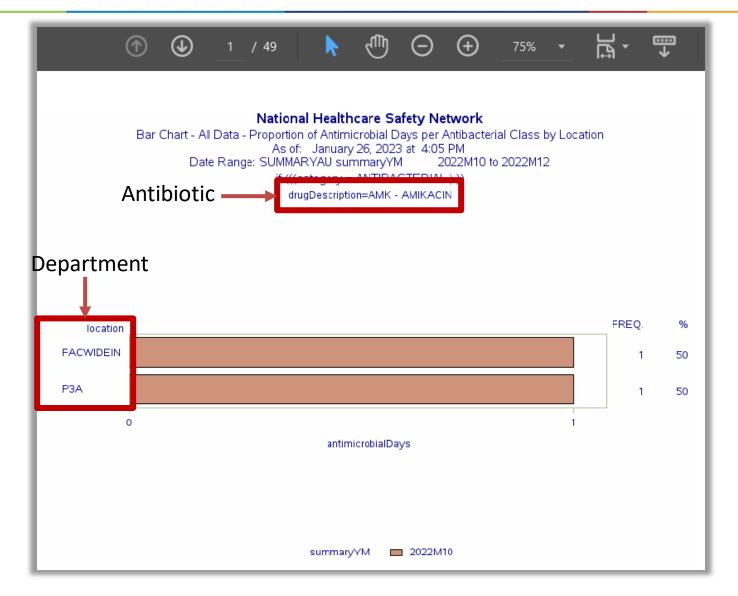
Centered in Care Powered by Pride

Antimicrobial Days per Antibacterial Class

Pie Chart



Bar Chart


Antimicrobial Days per Antibacterial Class

Bar Chart

Medicare Promoting Interoperability Program (PIP)

- A program implemented by CMS to continue a commitment to promoting and prioritizing interoperability and exchange of health data
- The new AUR Surveillance measure falls under the Public Health and Clinical Data Exchange Objective
- Beginning in CY2024, eligible hospitals and CAHs
 must attest to being in active engagement with CDC's
 NHSN to submit AUR data or claim an applicable
 exclusion in order to receive credit

Questions?

References

- Core Elements of Antibiotic Stewardship | Antibiotic Use | CDC
- Antimicrobial Stewardship APIC
- The Core Elements of Hospital Antibiotic Stewardship Programs (cdc.gov)
- NHSN Antimicrobial Use and Resistance (AUR) Module Protocol (cdc.gov)
- NHSN AUR Promoting Interoperability Guidance (cdc.gov)
- Promoting Interoperability Programs | CMS
- Social Media Cards and Videos: Antibiotic Resistance | CDC
- Antibiotic Resistance: Five Things to Know (cdc.gov)
- Your Risk of C. diff | CDC
- <u>Clinical Practice Guideline for the Management of Asymptomatic Bacteriuria: 2019 Update by the Infectious Diseases Society of America (idsociety.org)</u>
- Avoid Treatment of Asymptomatic Bacteriuria (cdc.gov)
- The Joint Commission New and Revised Requirements for Antibiotic Stewardship
- Simner PJ, Hindler JA, Bhowmick T, et al. What's new in antibiograms? Updating clsi m39 guidance with current trends. Humphries RM, ed. J Clin Microbiol. 2022;60(10):e02210-21.
- Truong WR, Hidayat L, Bolaris MA, Nguyen L, Yamaki J. The antibiogram: key considerations for its development and utilization. *JAC-Antimicrobial Resistance*. 2021;3(2):dlab060.