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Purpose of review

There likely are several predisposing factors to secondary infections in patients with Coronavirus disease
2019 (COVID-19), some of which may be preventable. The aim of this review is to explore the literature,
summarize potential predisposing factors to secondary infections and their incidence. It also summarizes a
variety of healthcare scenarios in which different kinds of secondary infections occur.

Recent findings

Apart from immune dysregulation, severe resource limitations in healthcare settings have made COVID-19
units conducive to a variety of secondary infections. Long-term effect of excess antibiotic use in COVID-19
patients is yet to be studied. Very few studies have assessed secondary infections as the primary outcome
measure making it difficult to know the true incidence. Mortality attributable to secondary infections in
COVID-19 patients is also unclear.

Summary

Incidence of secondary infections in COVID-19 patients is likely higher than what is reported in the
literature. Well designed studies are needed to understand the incidence and impact of secondary
infections in this patient population. Many of these may be preventable especially now, as personal
protective equipment and other healthcare resources are recovering. Infection prevention and control (IPC)
and antimicrobial stewardship programmes (ASP) must reassess current situation to correct any breaches
that could potentially cause more harm in these already vulnerable patients as we brace for a future surge
with another pandemic wave.
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INTRODUCTION

Although the coronavirus disease 2019 (COVID-19)
pandemic raged, much of the discussion rightfully
focused on secondary infections in patients infected
with SARS-CoV-2. Majority of deaths during the
1918–1919 influenza pandemic resulted directly
from secondary bacterial pneumonia [1,2]. ‘If grippe
condemns, the secondary infections execute’ [1, p.
448]. This quote by Louis Cruveilhier in the year
1919 highlights the magnitude of concern for sec-
ondary infections during 1918–1919 pandemic
influenza [1]. This experience supplemented by sim-
ilar data from the subsequent 1957 and 1968 pan-
demics likely primed clinicians to expect bacterial
superinfections to play a significant role during the
current pandemic. In addition, clinically discrimi-
nating COVID-19 patients with and without sec-
ondary bacterial infections could be challenging.
This may have led to increased antibiotic use in
COVID-19 patients.
rs Kluwer Health, Inc. All rights rese
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Despite warnings of public health threats posed
by potential pandemics [3], the world was stunned
by the arrival of COVID-19 and was caught in a
resource-limited state, which led to changes in stan-
dard of care (SOC) including adjustments to evi-
dence-based infection control safeguards. Thus,
the pandemic affected both IPC and ASP in signifi-
cant ways.

Within the long list of unknowns in this pan-
demic world is the question of the future of COVID-
19. In general, researchers agree that COVID-19 is
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KEY POINTS

� Immune dysregulation plays an important role in
secondary infections in COVID-18 patients, but there
may be healthcare-related predisposition that
is avoidable.

� Severe resource limitations and excess antibiotic use
may have resulted in a variety of healthcare acquired
infections including those caused by multidrug-
resistant organisms.

� True incidence and attributable mortality of secondary
infections is yet to be determined.

Nosocomial and healthcare-related infections

Cop
here to stay. In a recent survey of more than 100
immunologists, infectious disease researchers and
virologists working on SARS-CoV-2, 89% thought
that SARS-CoV-2 will become an endemic virus [4].
A mathematical model integrating viral, environ-
mental and immunologic factors predicted a range
of potential postpandemic scenarios spanning from
SARS-CoV-2 entering into regular circulation after
the initial pandemic wave, to a prolonged single-
peak pandemic, to an apparent elimination of the
virus followed by resurgence after a few years [5

&

].
Regardless of which scenario plays out, we can rea-
sonably predict that clinicians will be caring for
patients with COVID-19 and its secondary infec-
tions leading well into the foreseeable future. As
we move forward, understanding the factors that
predispose COVID-19 patients to secondary infec-
tions and the frequency with which secondary infec-
tions occur will have clinical, IPC and ASP
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implications. The aim of this literature review is
to explore and summarize potential predisposing
factors to secondary infections and their incidence.
PREDISPOSITION TO SECONDARY
INFECTIONS

A great deal of how secondary infections occur in
patients infected with SARS-CoV-2 is yet to be
understood. It may be multifactorial stemming from
virus and host interaction leading to immune dys-
regulation or treatment-related predisposition or
that related to healthcare interactions (Fig. 1).
Predisposition due to immune dysregulation

SARS-CoV-2 inhibits IFNb production, thereby
attenuating IFN-1 innate immune response [6,7].
Inhibition of IFN-1 induced signalling may lead to
impaired bacterial recognition. In addition, severe
COVID-19 is associated with exhaustion of CD4þ

and CD8þ T cells [8], which may be a result of
deficient IFN-I production [6,8]. Extrapolating from
influenza virus infection, alteration of TLR4 and
TLR5 pathways after viral infection results in
impaired neutrophil migration which in turn leads
to increased bacterial adherence to respiratory epi-
thelial cells [9]. High levels of complement compo-
nent C5a, a key driver of neutrophil impairment in
critical illness, have been reported in COVID-19
[10]. SARS-CoV-2 infection leads to sustained pro-
duction of tumour necrosis factor- a (TNF- a) and
inter-leukin-6 (IL-6) resulting in hyper-inflamma-
tion [11]. Sustained production of proinflammatory
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cytokines could be detrimental to host cells [12].
Macrophages become overwhelmed by the
increased burden of apoptotic cells and therefore
become limited in pathogen clearance [13–16].
Cytokine release syndrome and immune exhaustion
combined with lung damage may predispose host to
secondary infections [17]. Dysbiosis (imbalance of
microbial community) occurring in the respiratory
and gastrointestinal tract in association with acute
respiratory viral infections may alter immunity or
promote proliferation of pathogens [18]. The
dynamics of how immune response predisposes host
to secondary infections is still under study.
Treatment-related predisposition to
secondary infections

Although it has been long known that immuno-
modulatory agents could predispose patients to
infections, literature reveals discrepant results with
some studies showing low incidence in the setting of
tocilizumab use [19–21] and others showing high
incidence [22,23]. IPC practices along with differ-
ences in study designs might explain these incon-
sistencies. Corticosteroids either alone or in
combination with tocilizumab were shown to
increase the risk of secondary infections [24

&

,25
&

].
Nonpharmacologic treatment methods for

COVID-19 such as placement of patients with severe
ARDS in prone position to improve oxygenation can
lead to complications such as dislodgement or pull-
ing of tubes and lines [26,27], decreased visualiza-
tion of the insertion site and dependent oedema
compromising dressing integrity thereby increasing
the risk of secondary infections [28].
Predisposition due to alterations in standard
of care

There was a critical global shortage of PPE through
most of the year 2020 [29

&

,30,31], which led to
alterations in healthcare practices to conserve PPE.
There were reports of unconventional solutions for
PPE, such as plastic garbage bags and plastic water
bottle cutouts for gowns and eye protection, respec-
tively [32]. In March 2020, the Journal of the American
Medical Association (JAMA) issued a call for ideas on
how to address the impending PPE shortage [29

&

],
which was met within a week with more than
100 000 views and more than 250 comments from
readers [30]. Suggestions to reduce patient contact
such as utilizing mobile and out-of-room monitor-
ing and device controls, batching medications or
self-administration and barrier visits, were among
the responses sent by the readers [30]. Operating
with minimal resources, anxiety and fear were
0951-7375 Copyright � 2021 Wolters Kluwer Health, Inc. All rights rese
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rampant among healthcare personnel (HCP) [33].
Fear might have resulted in bypassing SOC and
evidence-based practices, which in turn might have
led to an increased risk of transmission of hospital
pathogens and healthcare-acquired infections
(HAIs) [33].

Batching tasks could put pressure on HCP to
complete all tasks in a limited amount of time while
trying to minimize contact, rushing the tasks that
need attention to detail [34]. This could lead to
missed opportunities for the five moments of hand
hygiene and breaches in device insertion and main-
tenance among others. Many hospitals moved med-
ication pumps and dialysis machinery out of the
patient care room into the hallways. This practice
could result in tubing laying on the floor increasing
the risk of contamination [34]. Support staff reas-
signed from noncritical care areas to meet the
demand in patient surges in critical care areas
may not be as well trained in the care of critical
care devices and may feel reluctant to remove
unnecessary devices [34]. Staff that were locums
or parachuting in from elsewhere may be unfamiliar
with the hospital, the equipment and the policies.
Use of ventilator circuits and suctioning catheters
for individual patients were extended by some, only
replacing if they were visibly soiled or malfunction-
ing, a major deviation from prepandemic SOC when
those were changed at scheduled intervals or when
malfunctioning or visibly soiled [35

&

]. These
changes to SOC could have increased the risk of
secondary infections.

Some hospitals had protocols to wear multiple
layers of gowns and gloves during care of COVID-19
patients [35

&

,36
&

]. An N95 respirator, a bouffant cap
and shoe covers with a gown and a pair of gloves
were worn on entry to the COVID-19 unit. These
were donned during the entire shift (referred by
some as PPE skin). A second gown and another pair
of gloves were worn before entering individual
patient rooms. The outer layer of gown and gloves
were discarded after exiting patients’ rooms. Hand
hygiene was to be performed after removing the
outer layer of PPE. The inner layer of gown and
gloves along with all other PPE was discarded before
exiting the unit. Some hospitals used a single set of
PPE with all patients and throughout the shift [37].
Gloves and gowns in these emergent situations were
utilized more for personal protection of HCP from
COVID-19 than as tools to protect patients from
HAIs [38]. Some hospitals allowed extra PPE layers
because of the fear and the perception of increased
protection for HCP [36

&

] from SARS-CoV-2 when in
fact they might increase the risk of self-contamina-
tion during doffing and transmission of other
pathogens among patients [36

&

]. Such alterations
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Table 1. Multidrug-resistant organism outbreaks in COVID-19 patients

Author
Geographic

location
Outbreak time

period Organism/s
Changes to infection control

standard of care

Patel et al. [40] Maryland, USA May–June 2020 MDR Escherichia coli
Pseudomonas aeruginosa
Acinetobacter baumannii

Possible contamination:
two layers of gown and gloves
Remove outer layers before

moving to another patient. Inner
layer stays

Team nursing model
Tight spaces and close proximity

in double occupancy

Perez et al. [35&] New Jersey, USA February–July 2020 Carbapenem-resistant
Acinetobacter baumannii

Extended use of ventilator circuits
and suctioning catheters only
replacing when visibly soiled or
malfunctioning

Tiri et al. [41] Terni, Italy March–June 2020 Carbapenem-resistant Klebsiella
pneumoniae

Four to five healthcare workers
turning the patient to prone
position

None other reported

Nori et al. [42] Bronx, NY, USA March–April 2020 New Delhi Metallo-betalactamase
(NDM) producing carbaenem-
resistant Enterobacterales

Reuse of PPE
Lapses of standard of care for

device maintenance
Patient cohorting in surge ICU

Porretta et al. [43] Tuscany, Italy March–May 2020 NDM producing carbapenem-
resistant Enterobacterales

NR

Kampmeier et al. [44] M€unster, Germany March–April, 2020 Vancomycin-resistant enterococci Hand hygiene
Environmental hygiene

Prestel et al. [36&] Florida, USA July-August 2020- Candida auris Contamination due to multiple
layers of gown and gloves. One
inner gown and one pair of
gloves are worn the entire shift

Chaudhary et al. [39] New Delhi, India April–July 2020 Candida auris (67%)
Other Candida spp.

NR

PPE, personal protective equipment.

Nosocomial and healthcare-related infections

Cop
in SOC resulted in multiple outbreaks of multidrug-
resistant organisms (MDRO) in COVID-19 patients
[35

&

,36
&

,37–44], no doubt only a fraction of those
reported in the literature (Table 1).

Blood stream infections, central line
associated blood stream infections,
catheter-related blood stream infections,
catheter-associated urinary tract infections
and ventilator-associated pneumonias

The scant number of studies that reported the inci-
dence of catheter-related blood stream infections
(CRBSI), central line associated blood stream infec-
tions (CLABSI) or catheter-associated urinary tract
infections (CAUTI) (Table 2) are before and after
comparisons that do not control for the multiple
changes in practices noted above. Therefore, no
conclusions can be made from these studies. In
addition to the excess risk posed by the myriad of
pandemic-imposed changes to healthcare practice
that were implemented to manage these patients,
BSI may occur as a direct result of the damage
4 www.co-infectiousdiseases.com
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incurred by SARS-CoV-2 itself. Bacterial transloca-
tion may be an early event related to intestinal
damage due to tissue infection, systemic inflamma-
tion-induced dysfunction and IL-6 mediated diffuse
vascular damage [45] and due to ischemic enteritis
and mesenteric infarctions [46,47]. Some studies
reported either a high frequency of Enterococcus-
related BSI or had an unknown source [48,49,50]
supporting the idea that BSI may be the result of
bacterial translocation from gastrointestinal tract.
In a retrospective cohort study, Knepper et al. [51]
reported that CAUTI rates were 83% higher, and
CLABSI rates were 65% higher in COVID-19 areas
than in non-COVID-19 areas. In a retrospective
study of CLABSIs and CAUTIs, Fakih et al. found
that the proportion of COVID-19 patients with
CLABSI events was five times greater than that for
non–COVID-19 patients with CLABSI with signifi-
cantly higher mortality [52]. There was no signifi-
cant change in CAUTI incidence.

High incidence of VAPs ranging from 29 to 86%
has been reported in patients with COVID-19 [53–
Volume 34 � Number 00 � Month 2021
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Table 2. Incidence, mortality and antibiotic use in COVID-19 patients with BSI, CLABSI, CAUTI and VAP

Type of
infection Author Study Design Incidence Predominant organisms Mortality

Antibiotic
Use

BSI Buetti et al. [49] Matched case-
cohort

15% CoNS
Enterococci

NR 79%

Bhatt et al. [50] Multicentre
case–control
(BSI vs. no
BSI)

34% Staphylococcus
epidermidis,

Methicillin susceptible
Staphylococcus aureus,
Enterococcus fecalis

53% 80%

Bonazzetti
et al.[48]

Retrospective
observational

67% Enterococcus species,
CoNS,

S. aureus

NR NR

CLABSI Knepper et al.
[51]

Retrospective
cohort

65% higher in COVID-
19 areas

NR NR NR

Fakih et al. [52] Retrospective
observational

Five times greater in
COVID-19 patients

CoNS, Candida spp. 53.8% NR

CAUTI Knepper et al.
[51]

Retrospective
cohort

83% higher in COVID-
19 areas

NR NR NR

Fakih et al. [52] Retrospective
observational

No significant change
from prepandemic
timeframe

NR NR NR

VAP Maesa et al.
[53]

Retrospective
observational

48% Enterobacteriaceae,
Hemophilus influenza,

P. aeruginosa

38% 94%

Rouze et al. [54] Multicentre
retrospective
cohort

51% P. aeruginosa,
Enterobacter spp.,
Klebsiella spp.

29% 95%

COVID-ICU
Group [55]

Multicentre
prospective
cohort

58% NR 31% NR

Luyt et al. [56] Retrospective
cohort

86% Enterobacteriaceae (40%
Amp-C cephalosporinase
producers)

P. aeruginosa

34% 100%

Zhou et al. [57] Retrospective
multicentre
cohort

31% NR NR 95%

Giacobbe et al.
[58]

Multicentre
retrospective
observational

29% P. aeruginosa 46% 95%

BSI, blood stream infections; CLABSI, central line associated blood stream infection; CAUTI, catheter-associated urinary tract infection; CoNS, coagulase-negative
Staphylococcal spp.; NR, not reported; VAP, ventilator-associated pneumonia.
aReported three cases of Aspergillus fumigatus.
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58]. Giacobbe et al. [58] reported a high 30-day case-
fatality of 46% (78 of 171 COVID-19 patients with
VAP); it most likely reflects the prognostic implica-
tions of the underlying viral infection and the super-
imposing secondary bacterial infection.
Predisposition due to empiric broad-
spectrum antimicrobial treatment

It is challenging to distinguish the clinical picture of
COVID-19 from atypical bacterial pneumonia dur-
ing early presentation, and VAP and hospital-
acquired pneumonia during severe COVID-19
0951-7375 Copyright � 2021 Wolters Kluwer Health, Inc. All rights rese
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[57,59]. Resulting widespread antimicrobial use
especially in the setting of corticosteroids, immu-
nomodulators such as interferon, tocilizumab and
other mAbs could potentially lead to changes in
microbiome and antimicrobial resistance, and likely
to an increased risk of fungal infections.

Incidence of secondary bacterial infections
and antibiotic use

In a meta-analysis that included more than 3000
patients with COVID-19, bacterial coinfection (esti-
mated on presentation) was identified in 3.5% of
patients [95% confidence interval (95% CI) 0.4–6.7]
rved. www.co-infectiousdiseases.com 5
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and secondary bacterial infection in 14.3% of
patients (95% CI 9.6–18.9). Most patients with
COVID-19 received antibiotics (71.9%, 95% CI
56.1–87.7) [60]. In another meta-analysis, 7% of
hospitalized COVID-19 patients had a bacterial
coinfection (95% CI 3–12, n¼2183) with 14% from
ICU and 4% from mixed ward/ICU settings. COVID-
19 patients with a coinfection were more likely to
die than patients who did not have a coinfection
[pooled odds ratio (OR) 5.82, 95% CI: 3.4–9.9,
n¼733, four studies]. Antibiotic use was reported
in 17 studies, with more than 90% of patients
receiving empirical antibiotics in 10 studies [61].
Other studies have shown similar low incidence of
secondary infections [59,62–67]. Although a few
studies such as those by Karaba et al. [63] identify
bacterial infections using criteria that include more
than respiratory cultures, all of the studies are retro-
spective reviews of existing data with very little
control over the clinical practice in terms of diag-
nostic tests or antimicrobial prescribing patterns;
respiratory cultures were infrequently obtained.

Antimicrobial resistance

Regardless of the true incidence of secondary infec-
tions, a staggering number of patients with COVID-
19 receive antibiotics potentially contributing to
antimicrobial resistance. This could adversely affect
the microbial landscape of secondary infections to
include difficult-to-treat MDRO. A combination of
excess antibiotic exposures, widespread use of
immunosuppressive medications, reuse of protec-
tive equipment, lapses in standards of care for main-
tenance of invasive devices and patient cohorting in
surge ICUs likely contributed to spread of New Delhi
Metallo-beta-lactamase producing Enterobacterales
infections in COVID-19 patients at a medical centre
in the Bronx, New York, USA [42]. How COVID-19
will affect antimicrobial resistance in the long run is
yet to be seen.

Secondary mould infections

Wang et al. [68] reported a significant association
between antibiotic use and mould infections,
whereas Bartoletti et al. did not [69]. Some studies
reported high use of antibiotics [70

&

]. An incidence
in the range of 7.7–30% was reported for invasive
mould infections in COVID-19 patients
[68,69,70

&

,71
&

,72,73]. A few studies found the use
of corticosteroids to be a risk factor for invasive
mould infection [69,73]. Available literature hints
to excess mortality in COVID-19 patients scourged
by secondary mould infections [69,70

&

]. Invasive
mould infection was reported to have occurred in
otherwise immunocompetent COVID-19 patients
[70

&

,71
&

].
6 www.co-infectiousdiseases.com
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Candidemia in COVID-19 patients

Some studies reported a significantly higher rate of
candidemia in COVID-19 patients than in non-
COVID-19 patients [74,75], whereas a few others
did not. [76]. Arastehfar et al. [77] found that the
extent of COVID-19 associated candidiasis (both
superficial and invasive) varies by country and
region. Such variations are likely to be explained
by differences in factors other than COVID-19
related immune dysfunction such as prolonged
ICU stay, central venous catheters, and broad-spec-
trum antibiotic use [77]. Differences in IPC proto-
cols may also be vital confounders leading to this
variation. It is currently unknown whether invasive
candidiasis leads to increased mortality in
this population.
CONCLUSION

Innate immune response to SARS-CoV-2 infection
in a host triggers an inflammatory cascade. The
resultant immune exhaustion and organ damage
may predispose the host to secondary infections.
Pandemic-imposed failure in ASP and IPC oversight
likely added insult to this injury and made the host
even more susceptible to secondary infections. Inci-
dence of secondary infections and attributable mor-
tality has been poorly studied. Few studies had
secondary infections as primary end points. Regard-
less, antibiotic use has been staggeringly high in
COVID-19 patients. Effect of antibiotic use on anti-
microbial resistance in these patients has also not
been well studied. However, there are breadcrumbs
throughout the literature that lead one to suspect
that the incidence and impact of secondary bacterial
or fungal infections is not insignificant in COVID-
19 patients and that in addition to predispositions
inherent to COVID-19, several other preventable
factors are at play.

Future studies should be designed to specifically
assess the incidence, risk factors and outcomes of
secondary infections in COVID-19 patients. MDRO
outbreaks are underreported in the COVID-19 liter-
ature and are likely more prevalent than what meets
the eye. IPC and ASP assessments and corrections
must be made widely to avoid further affronts.
Although it is difficult to distinguish viral pneumo-
nia or ARDS from secondary bacterial or fungal
pneumonia, relying on findings such as lobar con-
solidation or evidence of necrotizing pneumonia on
chest imaging, and rise in leukocyte counts, and
paying close attention to fever trends watching
for recrudescence of fever after initial defervescence
may help clinicians in making this distinction. In
addition, strict de-escalation protocols in COVID-19
patients could be helpful in reigning in the
Volume 34 � Number 00 � Month 2021
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antibiotic use. A wish list for the future, though
likely far-fetched, includes widespread bedside
molecular diagnostics that can quickly recognize
the pathogens and help curtail empiric antibiotic
use when used in combination with appropriate ASP
protocols [78]. A better understanding of predispos-
ing factors could help prevent morbidity and mor-
tality associated with secondary infections in
COVID-19 patients.
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