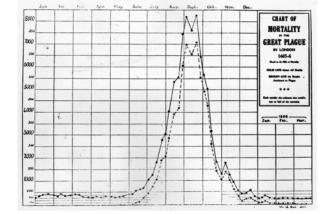
Predisposition of COVID-19 patients to secondary infections: set in stone or subject to change?

Madhuri Sopirala, MD, MPH, FACP, FIDSA Chief, Infection Prevention Parkland Health and Hospital Systems Associate Professor, Infectious diseases UT Southwestern Medical center

Conflicts of Interest

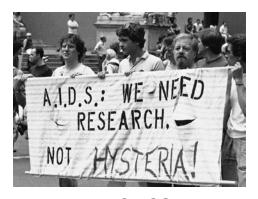

- None except:
 - I live COVID-19 24/7 these days
 - I have had COVID-19 (Once, I think)
 - I have had <u>all</u> of my indicated COVID-19 shots

Leprosy 11th Century

Black Death 1350

The Great Plague of London 1665

Cholera 1817


Russian Flu 1889

Spanish Flu 1918

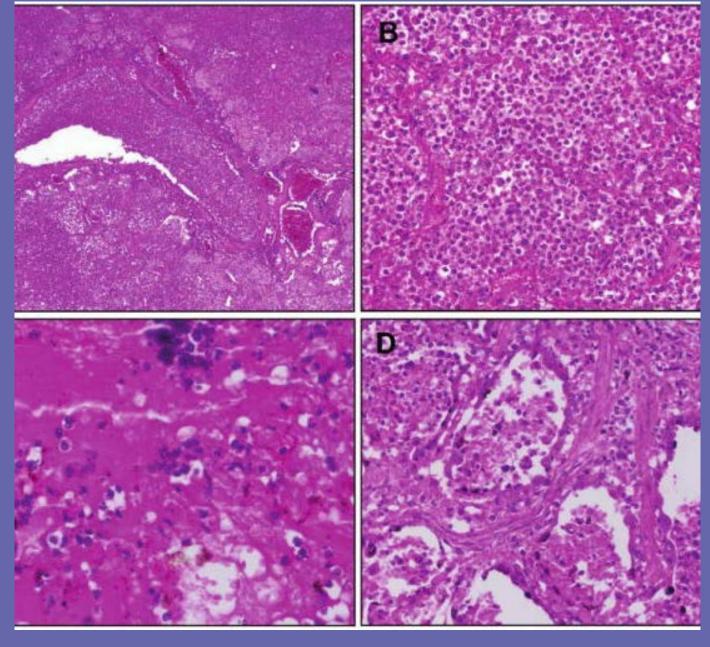
Asian Flu 1957

AIDS 1981

SARS 2003

COVID-19 2019 - now

1918 SPANISH FLU


The most notorious pandemic before COVID-19

"IF GRIPPE
CONDEMNS, THE
SECONDARY
INFECTIONS
EXECUTE"

- Louis Cruveilhier 1919

Morens DM et al. J Infect Dis. 2008 Oct 1; 198(7): 962–970.

Volume 198, Issue 7 1 October 2008

Predominant Role of Bacterial Pneumonia as a Cause of Death in Pandemic Influenza: **Implications for Pandemic Influenza** Preparedness 🕮

David M.. Morens ™, Jeffery K. Taubenberger Anthony S. Fauci

The Journal of Infectious Diseases, Volume 198, Issue 7, 1 October 2008, Pages 962–970, https://doi-org.foyer.swmed.edu/10.1086/591708

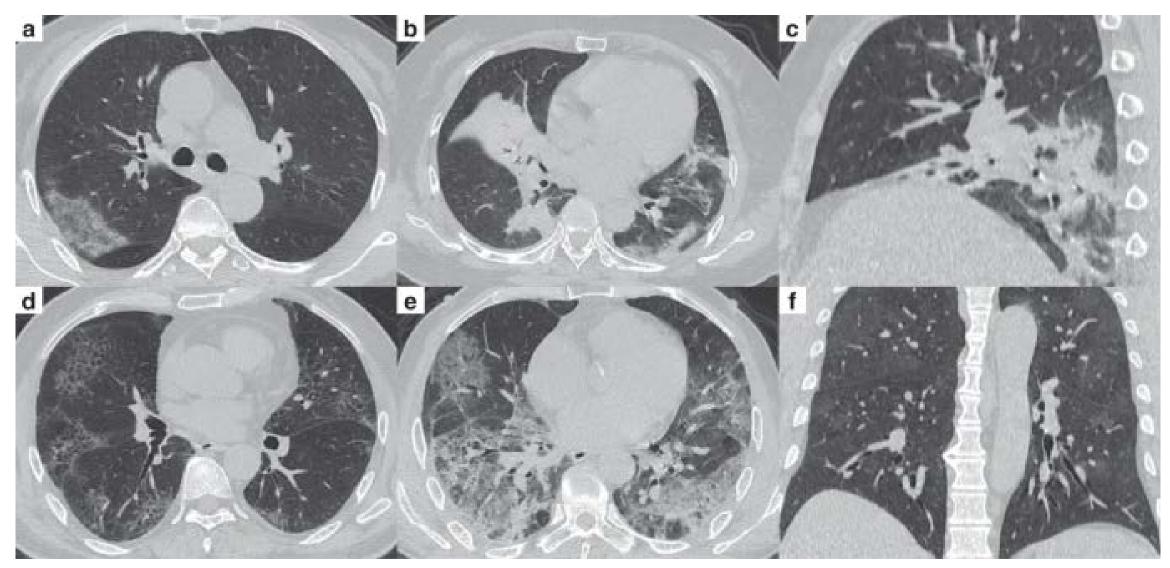
Table 1. Bacterial culture results in autopsy series involving 96 postmortem cultures of lung tissue from victims of the 1918–1919 influenza pandemic.

		No. (%) of cultures from which organism was recovered, by organism							
Type of autopsy series	No. of results	Streptococcus pneumoniae	Steptacocaus hemolyticus	Staphyloaccaus aureus	Diplococaus intracellulare meningitids	Mixed pneumopathogens	Bacillus influenzae	Other bacteria	No growth
All military (n = 60)	3515	855 (24.3)	615 (17.5)	263 (7.5)	40 (1.1)	707 (20.1)	387 (11.0)	484 (13.8)	164 (4.7)
All civilian (n = 36)	1751	380 (21.7)	281 (16.0)	164 (9.4)	1 (<0.1)	398 (22.7)	132 (7.5)	339 (19.4)	56 (3.2)
All military and civilian (n = 96)	5266	1235 (23.5)	896 (17.0)	427 (B.1)	41 (0.8)	1105 (21.0)	519 (9.9)	823 (15.6)	220 (4.2)
All higher- quality military and civilian ^a (n = 68)	3074	712 (23.2)	553 (18.0)	238 (7.7)	21 (0.7)	828 (26.9)	144 (4.7)	353 (11.5)	225 (7.3)
Predominance of pneumopathogens not confirmed (n = 14)	1115	209 (18.7)	132 (11.8)	52 (4.7)	0 (0.0)	24 (2.2)	210 (18.8)	402 (36.1)	96 (7.7)

Table 2. Bacterial culture results in autopsy series involving culture of blood and pleural fluid or empyema fluid from victims of the 1918–1919 influenza epidemic.

		No. (%) of cultures from which organism was recovered, by organism									
Type of autopsy series	No. of results	Streptococcus pneumoniae	Streptococcus hemolyticus	Staphylococcus aureus	Diplococcus intracellulare meningitidis	Mixed pneumopathogens	Bacillus influenzae	Other bacteria	No growth		
Blood culture (n = 42)											
All military and civilian	1887	509 (27.0)	377 (20.0)	68 (3.6)	5 (0.3)	28 (1.5)	61 (3.2)	278 (14.7)	561 (29.7)		
Pleural fluid or empyema fluid culture (n = 35)											
All military and civilian	1245	263 (21.1)	539 (43.3)	59 (4.7)	0 (0.0)	74 (5.9)	21 (1.7)	45 (3.6)	244 (19.6)		

Table 3. Summary of evidence from the 1918–1919 influenza pandemic consistent with the conclusion that bacterial pneumonia, rather than primary viral pneumonia, was the cause of most deaths.


Evidence, by type	Relevant reference(s)
Pathologic Evidence	
Most autopsies revealed severe bacterial pneumonia caused by common upper respiratory organisms	{20, 27–33}
In type, pattern, and case-fatality rate, influenza-associated bacterial pneumonia, including chronic lobar pneumonia, was typical of pneumonia during periods when influenza was not prevalent; bronchopneumonia, associated with diffuse "panbronchitis," predominated	[25, 28, 33, 34]
At autopsy, early and/or extensive repair of what are now thought to be primary viral changes was evident; severe sequelae in pneumonia survivors were minimal	[20, 30, 32]
Pathologic picture of bacterial bronchopneumonia associated with influenza in 1918–1919 was strongly similar to the more highly fatal measles-bacterial bronchopneumonia epidemics of 1917–1918	[20, 27, 63]
Mixed pneumopathogen-associated pneumonia was more fatal than single-pneumopathogen pneumonia	[29]
Pneumonia cases exhibited uniformly diffuse and extensive tracheobronchitis and/or bronchiolitis, the severity of which correlated with pneumonia severity in degree and anatomical location	[29]
Demographic and/or epidemiologic evidence	
Most influenza cases were typical of cases seen today: mild, uncomplicated, and associated with full recovery	[13–17]
Mortality at all ages was associated with bacterial pneumonia rates, not with influenza attack rates or pneumonia case-fatality rates	[19, 21]
Children 5–15 years old in 1918–1919 had the highest attack rates but the lowest mortality rates, similar to low rates seen in 1889–1893 and immediately before and after the 1918–1919 pandemic—rates seemingly inconsistent with viral virulence alone	[14, 21]
Influenza-associated pneumonia incidence rates and influenza death rates were significantly higher in US military camps, which experienced bacterial "colonization epidemics"	[63]
Average time from influenza onset to pneumonia onset in ultimately fatal cases (~10 days) may be more consistent with bacterial than viral pneumonia	[29]
Treatment response evidence	
The near universal observation that strict bed rest early in the course of uncomplicated influenza prevented pneumonia and death is consistent with an effect of isolation from carriers of bacterial pathogens	[13, 14]

1957

1968

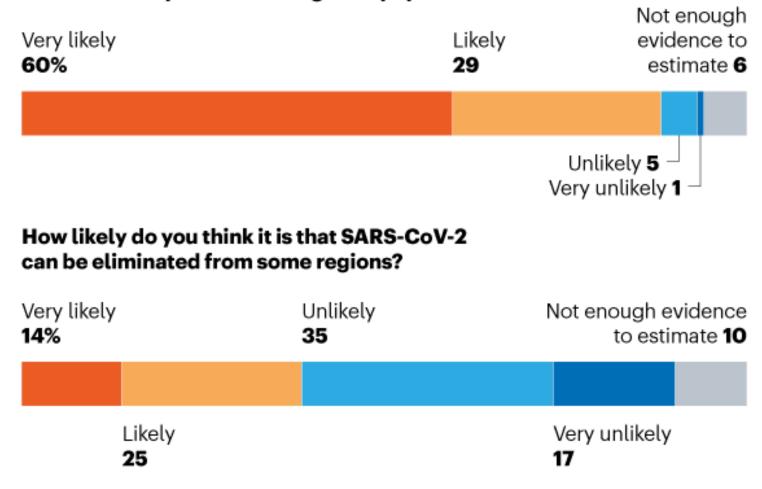
pandemics

likely primed clinicians to expect bacterial superinfections to play a significant role during the current pandemic

Feng Z et al. Nat Commun 11, 4968 (2020)

The World was stunned by the arrival of coving the world was stunned by the arrival of the world was stunned by the arrival of the world was stunned by the arrival of the world was stunned by the ...changes in standard of care including adjustments to evidence.

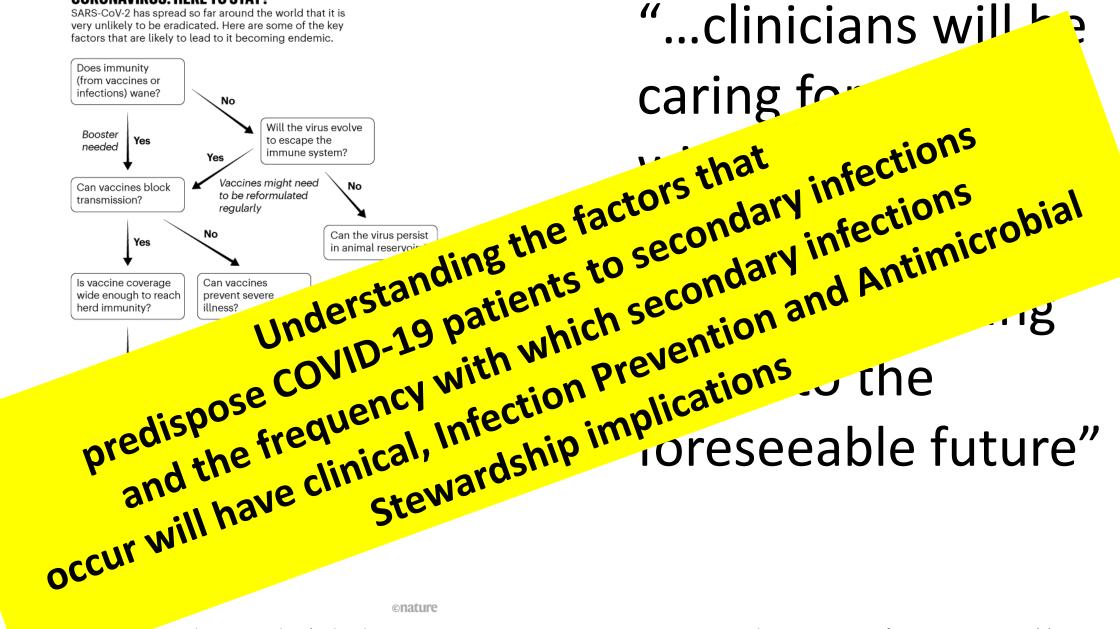
வரerent from that available to the front-line medical corps in 1918."


COVID-19 IS HERE TO STAY

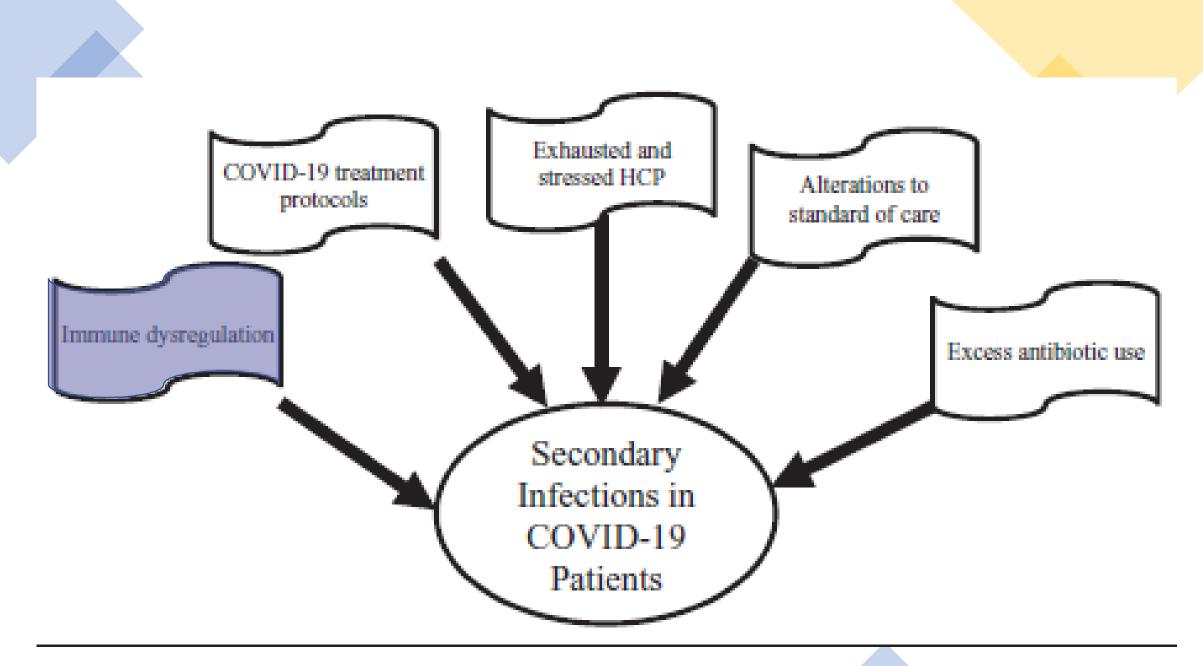
Phillips N. The coronavirus is here to stay: here's what that means. Nature 2021; 590:382–384.

ENDEMIC FUTURE

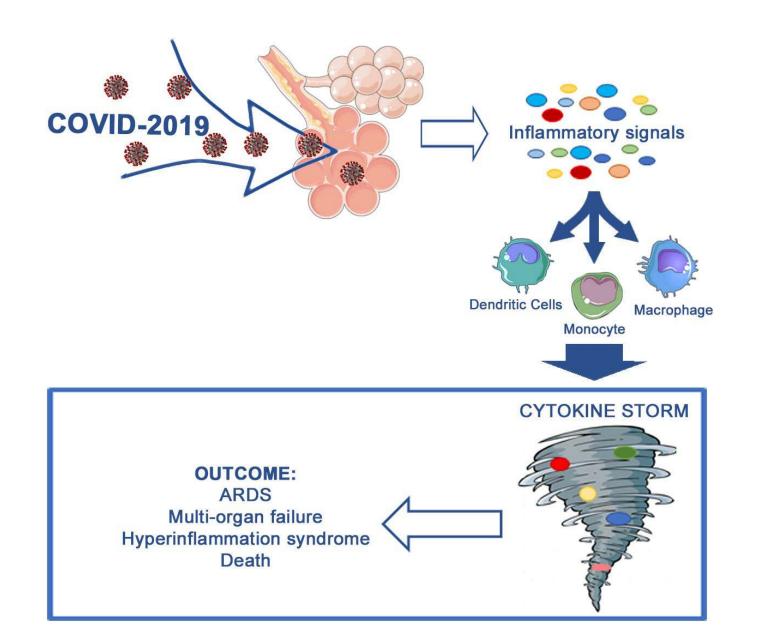
In a Nature poll, 89% of scientists felt that SARS-CoV-2 was either very likely or likely to become an endemic virus.

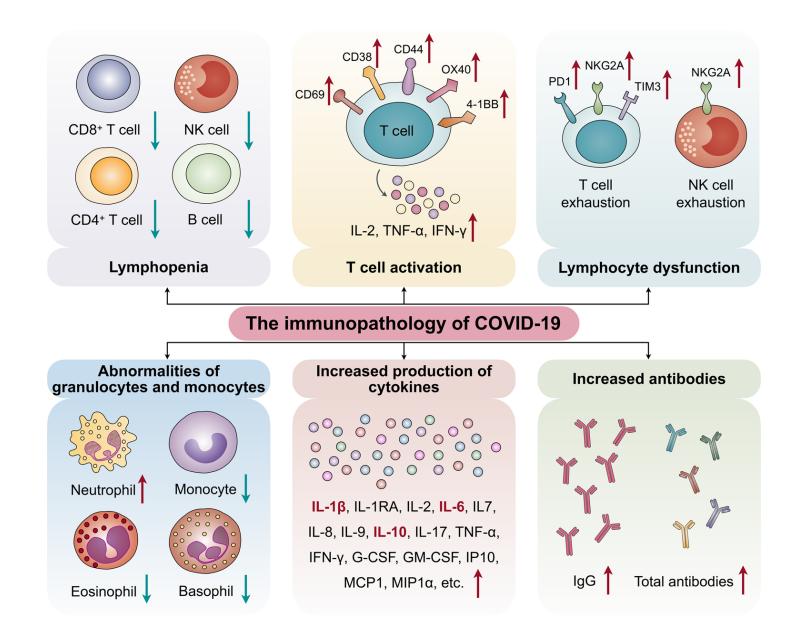

How likely do you think it is that SARS-CoV-2 will become an endemic virus: that is, one that continues to circulate in pockets of the global population?

119 immunologists, infectious-disease researchers and virologists from 23 countries. Percentages do not add up to 100% because of rounding.

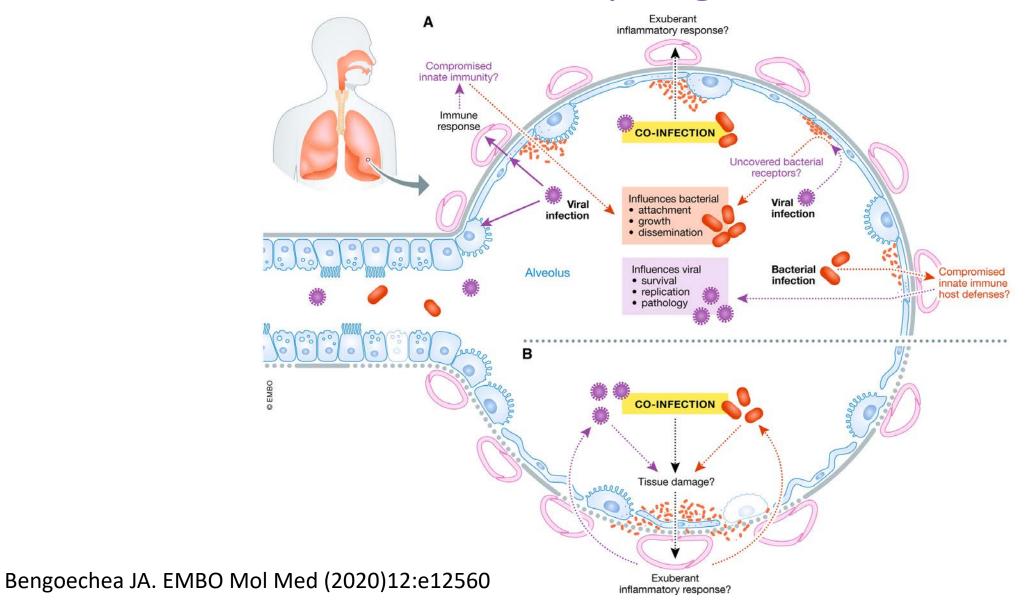


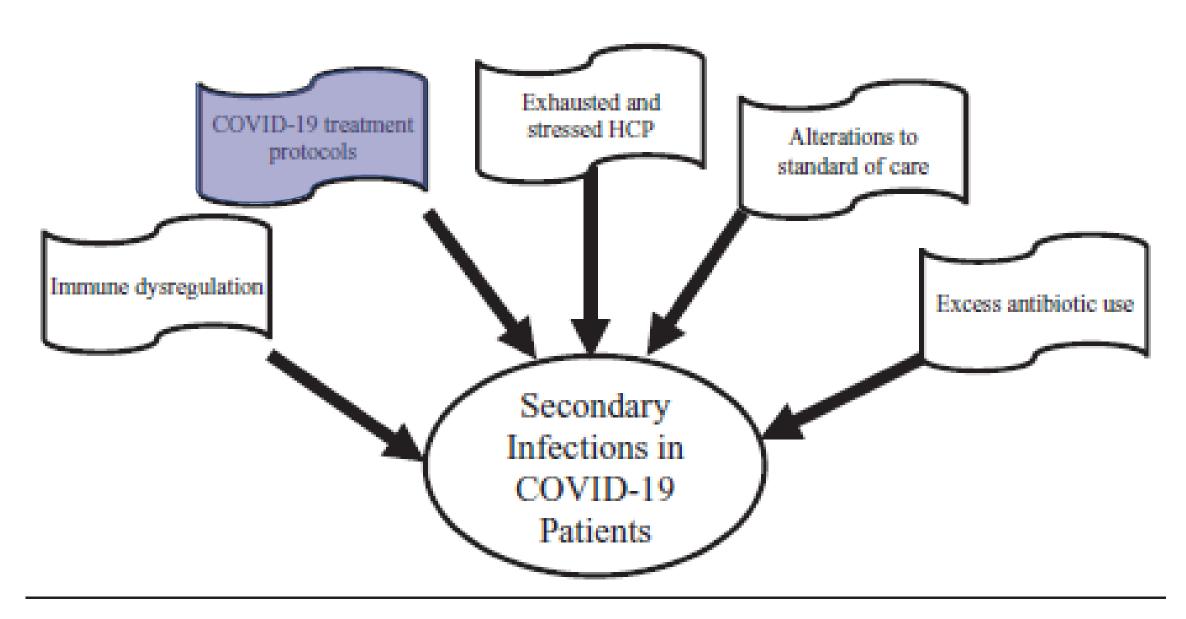
SARS-CoV-2 has spread so far around the world that it is very unlikely to be eradicated. Here are some of the key factors that are likely to lead to it becoming endemic.

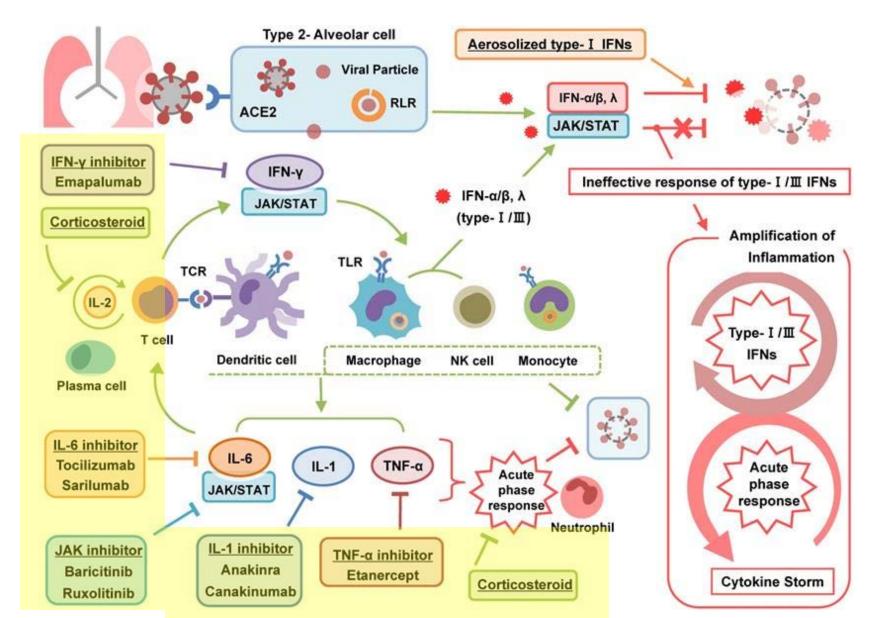



onature

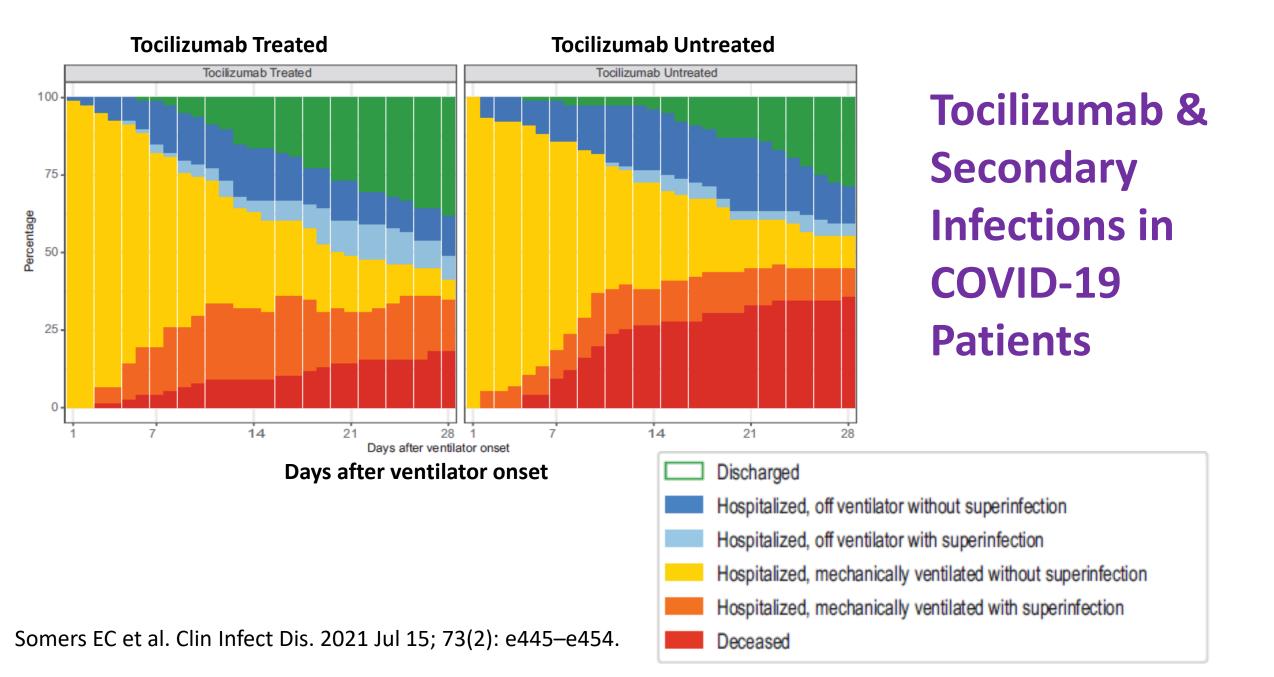
mavirus is here to stay: here's what that means. Nature .284–2مد.




Immune Dysregulation



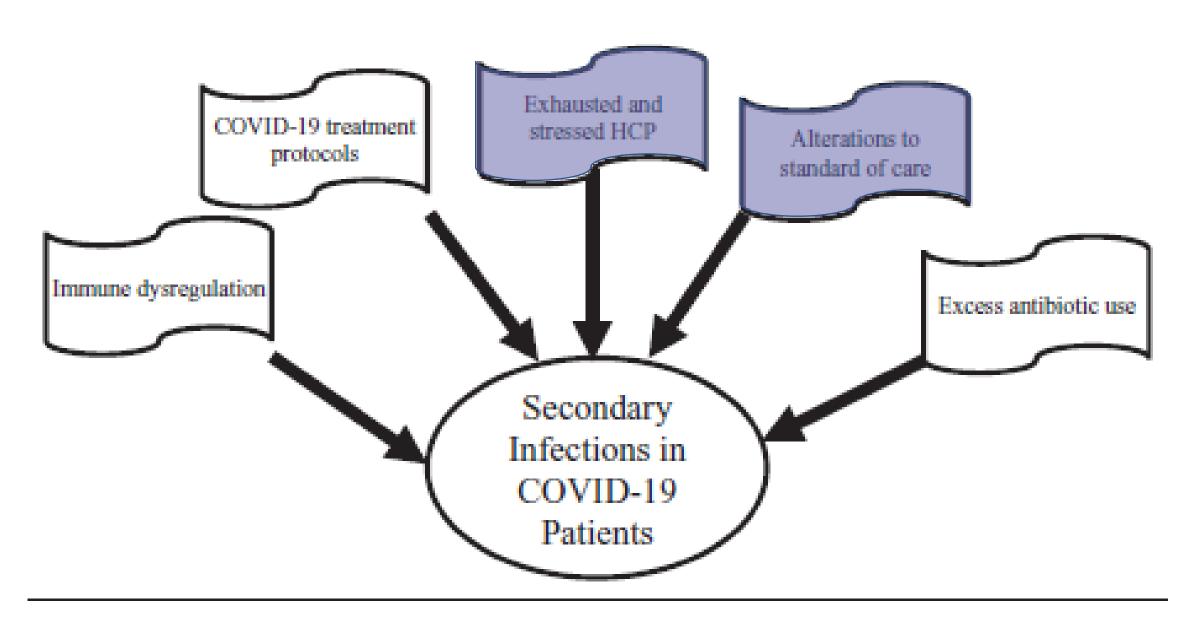
Predisposition to Secondary Infections due to Immune Dysregulation



Predisposition to Secondary Infections due to COVID-19 Treatment

Kim JS. Theranostics 2021; 11(1):316-329.

Steroids – Independent Risk Factor for Secondary Infections in COVID-19


Factors associated with development of healthcare-associated infections.

	Odds ratio	95% CI	р
Age	0.99	0.96-1.01	0.58
Male gender	0.76	0.37 - 1.53	0.45
DM	1.29	0.62 - 2.69	0.48
ESRD	1.05	0.24-4.55	0.94
COPD	0.82	0.38 - 1.77	0.62
Cancer	1.36	0.37 - 4.98	0.63
Hydroxychloroquine*	2.96	1.00-8.86	0.05
Steroids*	3.79	1.44-10.01	0.007
Tocilizumab*	5.04	2.39-10.65	< 0.001
Convalescent plasma	1.86	0.88 - 3.92	0.10
Central venous catheter	2.47	0.87 - 6.97	0.088
Mechanical ventilation	1.11	0.34-3.54	0.86
AKI requiring hemodialysis*	3.67	1.05-12.80	0.04
Antibiotics on admission	1.02	0.31-3.32	0.96
SOFA score >2 on admission	1.21	0.52-2.76	0.65

Kumar G. Int J Infect Dis. 2021 Mar; 104: 287–292.

Non-pharmacologic Treatment Methods

Predisposition to Secondary Infections due to Alterations to Standard of Care

Editorial

March 20, 2020

Conserving Supply of Personal Protective Equipment—A Call for Ideas

Howard Bauchner, MD¹; Phil B. Fontanarosa, MD, MBA¹; Edward H. Livingston, MD¹

≫ Author Affiliations | Article Information

JAMA. 2020;323(19):1911. doi:10.1001/jama.2020.4770

"We seek creative immediate solutions for how to maximize the use of PPE, to conserve the supply of PPE, and to identify new sources of PPE."

Gowns: plastic ponchos or poly bags, bedbug sheet material

Adhesive bandage as nasal PPE

Box. Summary of Recommendations for PPE Conservation and Management

Impor

Purchase from international suppliers: China proposed as a primary market given manufacturing capacity, experience with and decline in COVID-19 incidence

Reclaim

Dentists, farmers, construction, high schools, universities, veterinarians, salons, manufacturing, aerospace, industrial "clean labs" Individual HCW procurement in towns and communities

Charitable movements

Public or private buybacks

Public or private bounties

Reuse

Rotate through 72-h cycles given current understanding of surface viability

 $Reusable\ elastomeric\ respirators\ (have\ exchangeable\ filter\ cartridges)$

Disinfectants

Heat (eg, autoclave), UV, ozone, ethylene oxide, hydrogen peroxide, bleach, isopropyl alcohol, gamma or e-beam radiation, microwave, copper sulfate, methylene blue with light, sodium chlorine, iodine, zinc oxide impregnation (gowns), hypochlorous acid, commercial laundering (for cloth)

Repurpose

Prefabricated masks: snorkel and scuba, 3D printed, welder's, civilian military grade gas masks, ski buffs

Eye and face shields: sports eye protectors, motorcycle helmets with visors, balaclavas

Gowns: plastic ponchos or poly bags, bedbug sheet material Adhesive bandage as nasal PPE

Create supply

Sewn fabric masks and gowns, coffee filter masks, home HVAC filter masks

Extend supply

Plastic face shields (water bottle cutouts, thermoplastic sheets, A4 acetate sheets, Ziploc bags) to preserve face masks and eyewear

Reduce nonessential services

Cancel elective and ambulatory procedures; reduce questionable contact and isolation precautions (eg, MRSA/VRE, influenza, cellulitis)

Reduce patient contact

Utilize mobile and out-of-room monitoring and device controls, e-consults, extended dwell IVs, batching medications or self-administration, barrier visits

Alter staffing

Reduce student and trainee patient contacts

Use nonhuman services

Nonhuman services (drones and robots) for delivery of test kits for self-testing, robots for equipment movement within hospitals, decontamination protocols

Stratify use by patient risk

Cohort patients and reduce PPE use for those at low risk (ideally requires testing to accurately stratify low and high risk)

Employ immune workers

HCWs recovered from clinical illness or with demonstrated immunity care preferentially for COVID-19 patients without PPE

Use government solutions

Regionalize care and supply, import international supply, ration supply, loosen import regulations, commandeer business to accelerate supply

Manage supply

Reduce bulk packaging, Pyxis-like controlled distribution, nongovernment regional coordination of PPE distribution

Miscellaneous

Convert RV trailers to negative pressure spaces; phase change material to improve comfort and reduce reuse of gowns

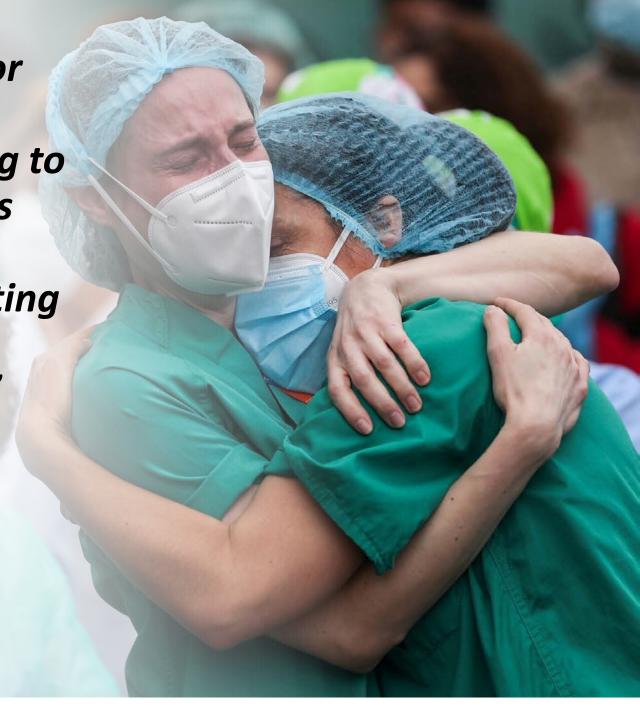
Abbreviations: COVID-19, coronavirus disease 2019; HCW, health care worker; HVAC, heating, ventilating, and air-conditioning; MRSA, methicillin-resistant Staphylococcus aureus; PPE, personal protective equipment; VRE, vancomycin-resistant Enterococcus.

Proposed Solutions

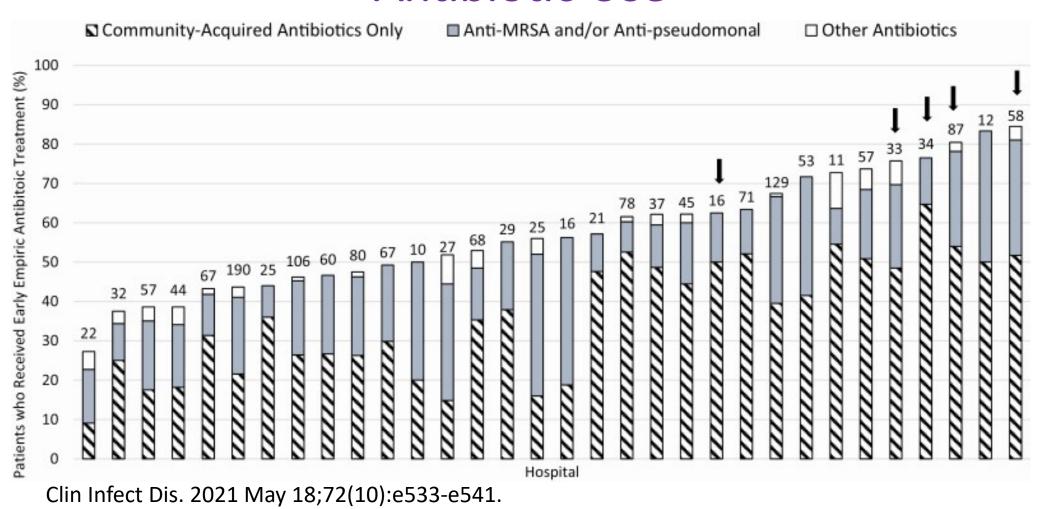
Predisposition to Secondary Infections due to Exhaustion and Stress of HCP

NEW YORK POST

Worker at NYC hospital where nurses wear trash bags as protection dies from coronavirus


By Ebony Bowden, Carl Campanile and Bruce Golding

March 25, 2020 | 4:32pm | Updated



"Among the many valid reasons for fear in this pandemic are fear of developing infection, fear of failing to provide adequate care for patients given limited resources, fear of carrying the virus home and infecting family and friends, fear of stigmatization, and many others."

Cawcutt et al. Fighting fear in healthcare workers during the COVID-19 pandemic. Infect Control Hosp Epidemiol. 2020 Oct;41(10):1192-1193.

Predisposition to Secondary Infections due to Antibiotic Use

Acute Bacterial Co-Infection in COVID-19

A Rapid Living Review and Meta-analysis

24 Studies included

3338 COVID-19 Patients

December 2019 to March 2020

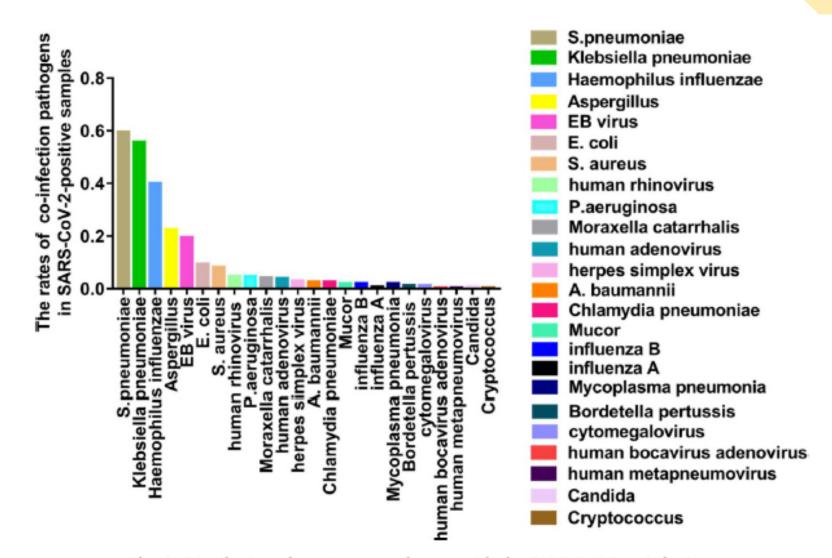
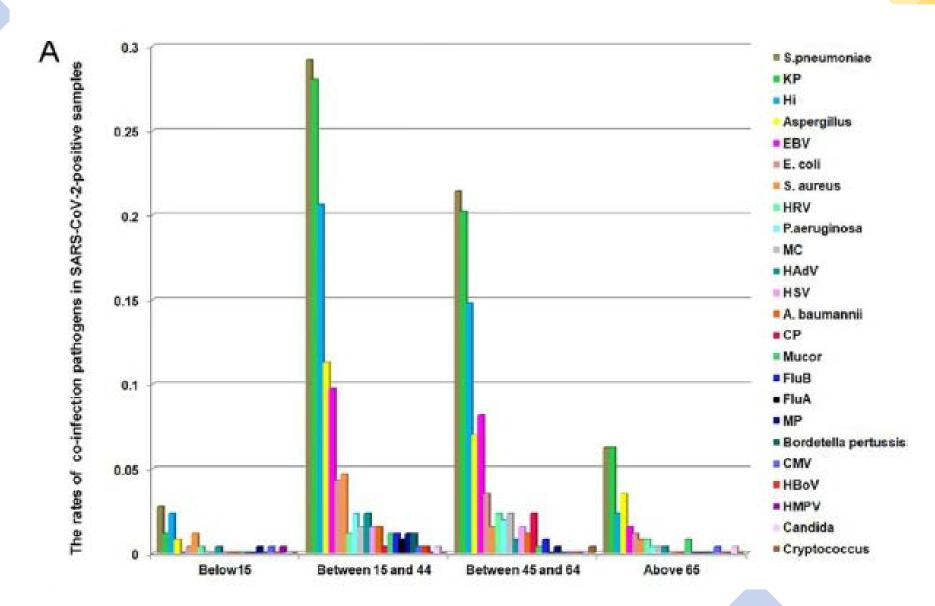
3.5% Co-Infection

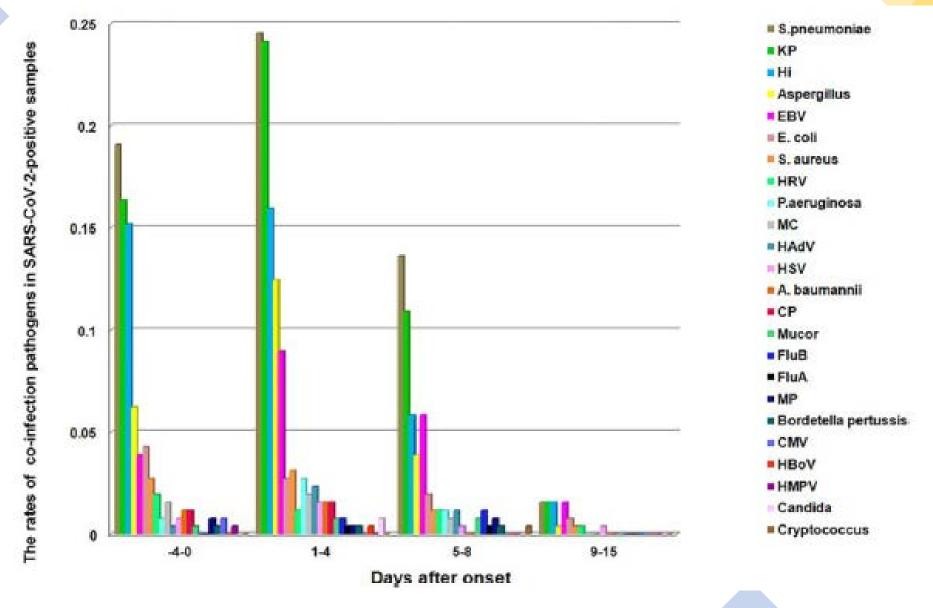
On presentation

14.3%
Secondary
Infection
After presentation

71.8% Antibiotic Prescribing

Langford BJ, So M, Raybardhan S, Leung V, Westwood D, MacFadden DR, Soucy JPR, Daneman N. Clinical Microbiology and Infection. 2020.


Fig. 1. Distribution of respiratory pathogens with the SARS-CoV-2 co-infection.

Distribution pathogens in different ages

X. Zhu, et al. Virus Research 285 (2020) 198005

Distribution of pathogens in different time of onset.

X. Zhu, et al. Virus Research 285 (2020) 198005

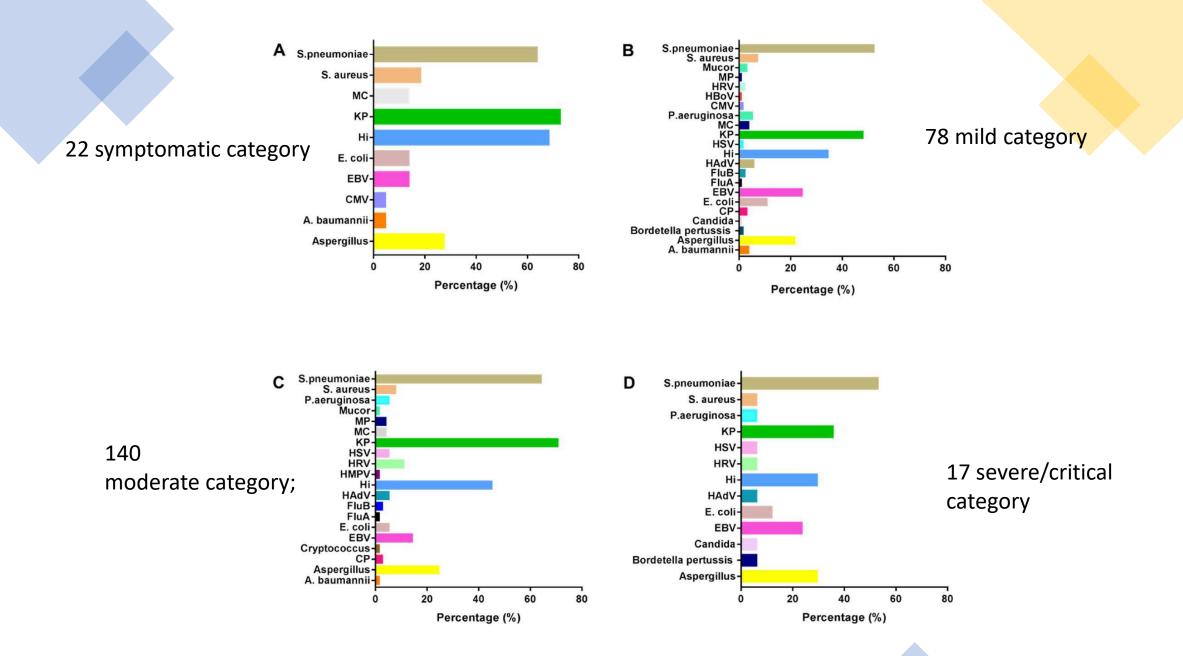


Table 1. Multidrug-resistant organism outbreaks in COVID-19 patients

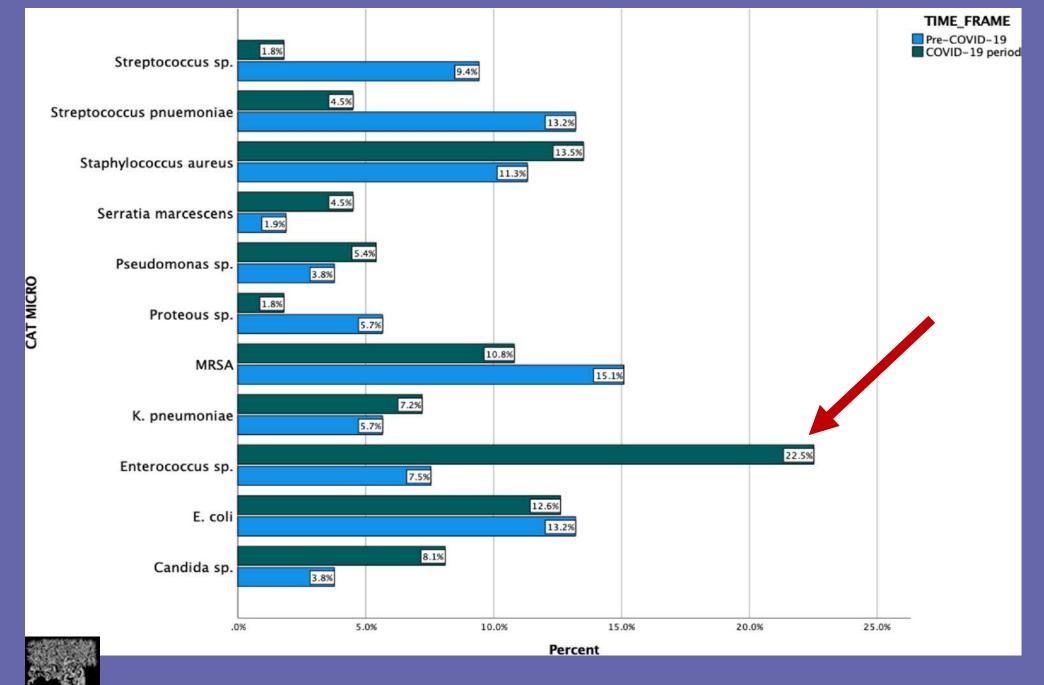
Author	Geographic location	Outbreak time period	Organism/s	Changes to infection control standard of care
Patel et al. [40]	Maryland, USA	May–June 2020	MDR Escherichia coli Pseudomonas aeruginosa Acinetobacter baumannii	Possible contamination: two layers of gown and gloves Remove outer layers before moving to another patient. Inner layer stays Team nursing model Tight spaces and close proximity in double occupancy
Perez <i>et al.</i> [35*]	New Jersey, USA	February–July 2020	Carbapenem-resistant Acinetobacter baumannii	Extended use of ventilator circuits and suctioning catheters only replacing when visibly soiled or malfunctioning
Tiri <i>et al.</i> [41]	Terni, Italy	March–June 2020	Carbapenem-resistant Klebsiella pneumoniae	Four to five healthcare workers turning the patient to prone position None other reported
Nori <i>et al.</i> [42]	Bronx, NY, USA	March–April 2020	New Delhi Metallo-betalactamase (NDM) producing carbaenemresistant <i>Enterobacterales</i>	Reuse of PPE Lapses of standard of care for device maintenance Patient cohorting in surge ICU
Porretta <i>et al.</i> [43]	Tuscany, Italy	March–May 2020	NDM producing carbapenem- resistant Enterobacterales	NR
Kampmeier et al. [44]	Münster, Germany	March-April, 2020	Vancomycin-resistant enterococci	Hand hygiene Environmental hygiene
Prestel <i>et al.</i> [36 [•]]	Florida, USA	July-August 2020-	Candida auris	Contamination due to multiple layers of gown and gloves. One inner gown and one pair of gloves are worn the entire shift
Chaudhary et al. [39]	New Delhi, India	April–July 2020	Candida auris (67%) Other Candida spp.	NR

Incidence, mortality and antibiotic use in COVID-19 patients with BSI, CLABSI, CAUTI and VAP

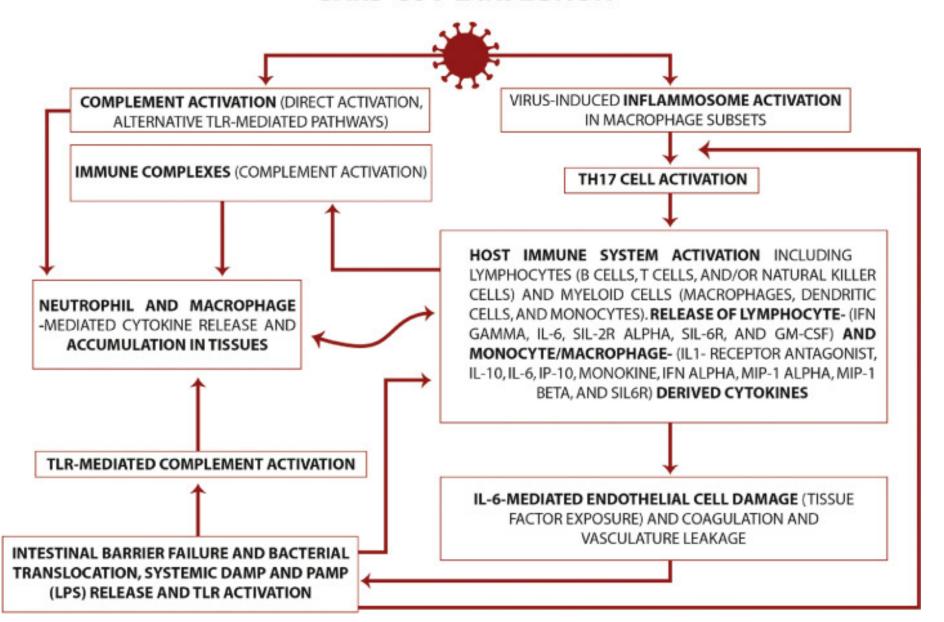
Before and after comparisons that do not control for the multiple changes in practices

Table 2. Incidence, mortality and antibiotic use in COVID-19 patients with BSI, CLABSI, CAUTI and VAP

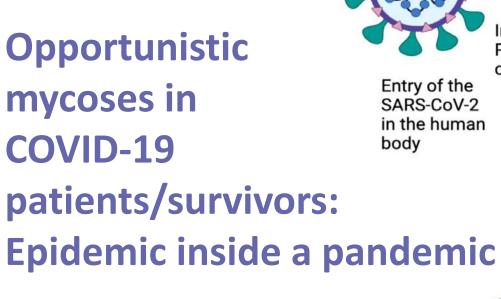
Type of						Antibiotic
infection	Author	Study Design	Incidence	Predominant organisms	Mortality	Use
BSI	Buetti et al. [49]	Matched case- cohort	15%	CoNS Enterococci	NR	79%
	Bhatt <i>et al.</i> [50]	Multicentre case–control (BSI vs. no BSI)	34%	Staphylococcus epidermidis, Methicillin susceptible Staphylococcus aureus, Enterococcus fecalis	53%	80%
	Bonazzetti et al.[48]	Retrospective observational	67%	Enterococcus species, CoNS, S. aureus	NR	NR
CLABSI	Knepper <i>et al.</i> [51]	Retrospective cohort	65% higher in COVID- 19 areas	NR	NR	NR
	Fakih <i>et al.</i> [52]	Retrospective observational	Five times greater in COVID-19 patients	CoNS, Candida spp.	53.8%	NR
CAUTI	Knepper <i>et al.</i> [51]	Retrospective cohort	83% higher in COVID- 19 areas	NR	NR	NR
	Fakih <i>et al.</i> [52]	Retrospective observational	No significant change from prepandemic timeframe	NR	NR	NR
VAP	Maes ^a et al. [53]	Retrospective observational	48%	Enterobacteriaceae, Hemophilus influenza, P. aeruginosa	38%	94%
	Rouze et al. [54]	Multicentre retrospective cohort	51%	P. aeruginosa, Enterobacter spp., Klebsiella spp.	29%	95%
	COVID-ICU Group [55]	Multicentre prospective cohort	58%	NR	31%	NR
	Luyt et al. [56]	Retrospective cohort	86%	Enterobacteriaceae (40% Amp-C cephalosporinase producers) P. aeruginosa	34%	100%
	Zhou <i>et al.</i> [57]	Retrospective multicentre cohort	31%	NR	NŘ	95%
33:000-	Giacobbe <i>et al.</i> [58] –000	Multicentre retrospective observational	29%	P. aeruginosa	46%	95%

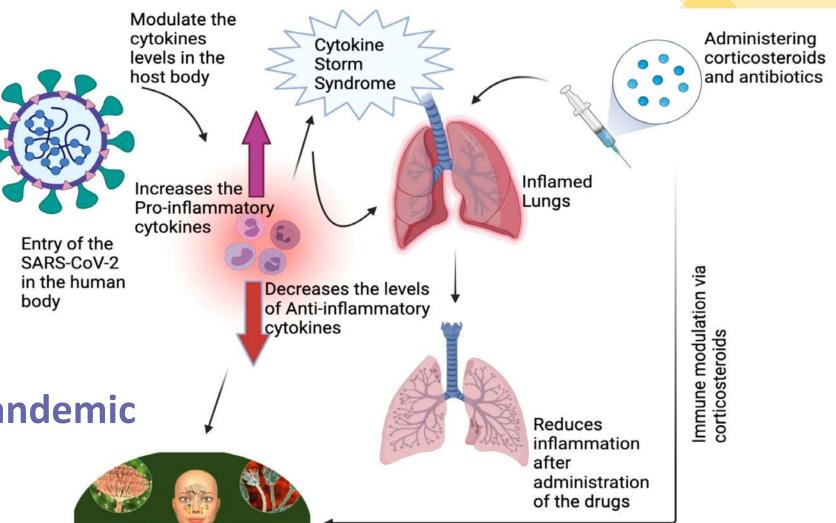

Sopirala MM. Curr Opin Infect Dis 2021, 33:

56% isolates from
BSI are
Enterococcus
species

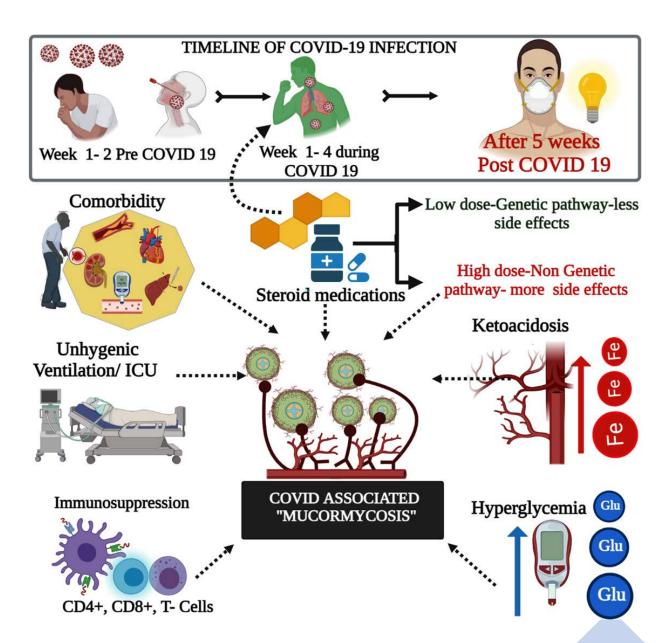

Characteristics of the Isolates and Types of Bloodstream Infection

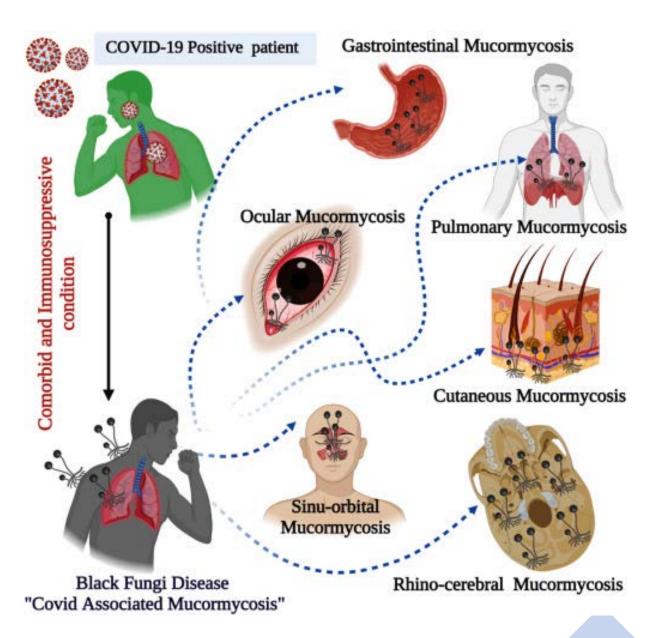
	Characteristics of the isolates and Types of Bloodstream infection										
IV	licroorganisms	Isolates (n = 117)	Bloodstream Infection Episodes (n = 93)	Monomicrobial, n = 71 (76.3%)	Polymicrobial, n = 22 (23.7%)	Recurrent, n = 19 (20.4%)					
G	Gram-positive, n (%)	85 (72.6)	74 (79.6)	52 (73.2)	22 (100)	14 (73.7)					
	Enterococcus species ^b	53 (45.3)	53 (55.8)	32 (45.1)	22 (100)	11 (57.9)					
	Vancomycin-resistant Enterococcus faecium	5 (4.3)	5 (5.4)	3 (4.2)	2 (9.1)	1 (5.3)					
	Staphylococcus aureus	7 (6)	7 (7.5)	3 (4.2)	4 (18.2)	2 (10.5)					
	Methicillin-resistant S. aureus	5 (4.3)	5 (5.4)	2 (2.8)	3 (13.6)	1 (5.3)					
	Coagulase-negative Staphylococci	24 (20.5)	24 (25.8)	16 (22.5)	8 (36.4)	5 (26.3)					
	Gemella sanguinis	1 (0.8)	1 (0.8)	1 (0.8)	0 (0.0)	0 (0.0)					
G	Gram-negative, n (%)	29 (24.8)	27 (29.0)	16 (22.5)	12 (54.5)	10 (52.6)					
	Enterobacteralesa	19 (16.2)	19 (20.4)	10 (14.1)	9 (40.9)	5 (26.3)					
	Extended spectrum beta lactamase- positive Enterobacterales	6 (5.1)	6 (6.5)	3 (4.2)	3 (13.6)	2 (10.5)					
	Carbapenemase-producing Enterobacterales	10 (8.5)	10 (10.8)	6 (8.5)	4 (18.2)	2 (10.5)					
	Enterobacter species	6 (5.1)	6 (6.5)	4 (5.6)	2 (9.1)	3 (15.8)					
	Cephalosporin-resistant Enterobacter	4 (3.4)	4 (4.3)	3 (4.2)	1 (4.5)	1 (3.6)					
	Pseudomonas aeruginosa	2 (1.7)	2 (2.2)	1 (1.4)	1 (4.5)	1 (5.3)					
	MDR P. aeruginosa	1 (0.8)	1 (1.1)	1 (1.4)	0 (0.0)	1 (5.3)					
	Stenotrophomonas maltophilia	1 (0.8)	1 (1.1)	1 (1.4)	0 (0.0)	1 (5.3)					
	MDR S. maltophilia	1 (0.8)	1 (1.1)	1 (1.4)	0 (0.0)	1 (5.3)					
	Acinetobacter baumannii	1 (0.8)	1 (1.1)	0 (0.0)	1 (4.5)	0 (0.0)					
Y	easts, n (%)	3 (2.6)	3 (3.2)	3 (4.2)	0 (0.0)	0 (0.0)					
	Candida albicans	3 (2.6)	3 (3.2)	4 (4.2)	0 (0.0)	0 (0.0)					


Crit Care Med. 2021 Jan; 49(1): e31–e40.



SARS-COV-2 INFECTION




Intestinal permeability changes with bacterial translocation

Increased cytokines levels paves way for opportunistic fungus in and outside body to become pathogenic and cause infections.

	Country	Case number in initial report	Age, years	Sex	Comorbidities	Length of illness, days	Invasive mechanical ventilation (days)	Extra- corporeal membrane oxygenation	Immuno- therapy	Antifungal	Mould identification	Autopsy type	Extent of fungal involvement
Borœuk et al (2020) ²³	Italy	29	79	Male	Dementia, congestive heart failure, intestinal ischaemia	9	Yes (6)	No	None	None	Aspergillus	Standard	Airway only
Borczuk et al (2020) ²³	Italy	39	61	Male	COPD, congestive heart failure, pharyngeal cancer	6	No	No	None	None	Aspergillus	Standard	Bronchopneumonia
Carsana et al (2020), ²⁹ Antinori et al (2020) ⁷²	Italy	ND	73	Male	Diabetes, hypertension, hyperthyroidism, atrial fibrillation, obesity	ND	Yes (9)	No	None	Liposomal amphotericin B, then isavuconazole	Aspergillus fumigatus	Standard	Bronchial wall ulceration and focal necrotising pneumonia
De Michele et al (2020) ³¹	USA	ND	ND	ND	ND	ND	No	No	ND	ND	Aspergillus	Standard	Bronchopneumonia, mycetoma
Deinhardt-Emmer et al (2020) ³²	Germany	3	78	Male	Hypertension, diabetes, chronic renal failure	30	Yes (7)	No	None	None	Fungus not specified	Standard	Fungal pneumonia
Hanley et al (2020)42	UK	5	22	Male	Obesity	27	Yes (22)	No	None	Caspofungin	Mucormycete	Standard	Lungs, hilar lymph node brain, kidney
Rapkiewicz et al (2020) [⊊]	USA	2	60	Male	Coronary artery disease	7	No	No	None	None	Fungus not specified	Standard	Erosive bronchitis with hyphae; bronchopneumonia (fungal stain negative)
Remmelink et al (2020) ⁵⁸	Belgium	6	73	Male	Hypertension, chronic renal failure	11	Yes (ND)	Yes	Steroids	ND	Aspergillus	Standard	Lung and trachea
Remmelink et al (2020) ⁵⁸	Belgium	7	56	Male	None	7	No	No	None	ND	Aspergillus	Standard	Bilateral invasive aspergillosis (lungs)
Schaefer et al (2020) ⁶³	USA	4	50	Male	Relapsed B-ALL, febrile neutropenia, invasive aspergillosis	9	Yes (7)	No	None	ND	Aspergillus*	Standard	Lung abscess
Schurink et al (2020) ⁶⁵	Netherlands	ND	ND	ND	ND	ND	ND	ND	ND	ND	Aspergillus	Standard	Massive aspergillosis involving lung parenchyma

Lancet Microbe. 2021 Aug;2(8):e405-e414.

Conclusions...

- Innate immune response to SARS-CoV-2 infection in a host triggers an inflammatory cascade
- The resultant immune exhaustion and organ damage may predispose the host to secondary infections
- Pandemic-imposed failure in ASP and IPC oversight likely added insult to this injury and made the host even more susceptible to secondary infections
- Incidence of secondary infections and attributable mortality has been poorly studied
- Antibiotic use has been staggeringly high in COVID-19 patients
- Effect of antibiotic use on antimicrobial resistance in these patients has also not been well studied
- In addition to predispositions inherent to COVID-19, several other preventable factors are at play

...Conclusions

- MDRO outbreaks are underreported in the COVID-19 literature
- IPC and ASP assessments and corrections must be made widely to avoid further affronts.
- Findings that could distinguish viral pneumonia or ARDS from secondary bacterial or fungal pneumonia:
 - lobar consolidation or evidence of necrotizing pneumonia on chest imaging
 - rise in leukocyte counts, and
 - paying close attention to fever trends watching for recrudescence of fever after initial defervescence may help clinicians in making this distinction.
- Strict de-escalation protocols in COVID-19 patients

QUESTIONS